Drinking Water Distribution Systems


Book Description

Protecting and maintaining water distributions systems is crucial to ensuring high quality drinking water. Distribution systems-consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances-carry drinking water from a centralized treatment plant or well supplies to consumers' taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management challenge from both an operational and public health standpoint. Recent data on waterborne disease outbreaks suggest that distribution systems remain a source of contamination that has yet to be fully addressed. This report evaluates approaches for risk characterization and recent data, and it identifies a variety of strategies that could be considered to reduce the risks posed by water-quality deteriorating events in distribution systems. Particular attention is given to backflow events via cross connections, the potential for contamination of the distribution system during construction and repair activities, maintenance of storage facilities, and the role of premise plumbing in public health risk. The report also identifies advances in detection, monitoring and modeling, analytical methods, and research and development opportunities that will enable the water supply industry to further reduce risks associated with drinking water distribution systems.










Microbial Quality of Water Supply in Distribution Systems


Book Description

Hidden problems, buried deep in the pipe networks of water distribution systems, are very serious potential threats to water quality. Microbial Quality of Water Supply in Distribution Systems outlines the processes and issues related to the degradation of water quality upon passage through networks of pipes, storage reservoirs, and standpipes on its way to the consumer. The risks associated with biofilm accumulation, bacteria, and other contaminants are discussed in great detail. In addition to its excellent microbiological coverage of organisms in drinking water and biofilms in distribution systems, Microbial Quality of Water Supply in Distribution Systems provides clear treatments of the technical and public communication issues most commonly affecting the quality of water and water supply systems. The inclusion of numerous case histories in this new book makes it a complete reference source for anyone concerned with water quality and water distribution systems.







Microbial Growth in Drinking Water Supplies


Book Description

Maintaining the microbial quality in distribution systems and connected installations remains a challenge for the water supply companies all over the world, despite many years of research. This book identifies the main concerns and knowledge gaps related to regrowth and stimulates cooperation in future research. Microbial Growth in Drinking Water Supplies provides an overview of the regrowth issue in different countries and the water quality problems related to regrowth. The book assesses the causes of regrowth in drinking water and the prevention of regrowth by water treatment and distribution. Editors: Dirk van der Kooij and Paul W.J.J. van der Wielen, KWR Watercycle Research Institute, The Netherlands




Assessing Microbial Safety of Drinking Water


Book Description

Inadequate drinking water quality and poor sanitation have remained the world's major causes of preventable morbidity and mortality. In 1996 the OECD called for concerted action to improve the assessment and management of the world's sources of drinking water. This guidance document seeks to respond to this call. It is the product of a shared initiative between the OECD and the World Health Organization. It is a state-of-the-art review that will contribute to the revisions of the WHO's Guidelines for Drinking Water Quality. Assessing Microbial Safety Of Drinking-water has elements of both revolution and evolution. It is revolutionary in that it supports a rapidly emerging approach for a broader, system-wide management perspective. This is based on a risk management framework that has evolved from the traditional indicator concept to include multiple parameters and where consideration is also given to tolerable risk, water quality targets and public health status.