Biomaterials for Implants and Scaffolds


Book Description

This book highlights the latest, cutting-edge advances in implantable biomaterials. It brings together a class of advanced biomaterials in two highly active research areas, namely implants and tissue scaffolds, to underline their respective functional requirements for further development. It is unique in providing a full range of methodological procedures, including materials syntheses, characterisation, cellular tests and mathematical modelling. Covering metallic, ceramic, polymeric and composite materials commonly used in biological applications and clinical therapeutics, it is a valuable resource for anyone wanting to further their understanding of the latest developments in implantable biomaterials. Focusing on biomedical applications in implants and scaffolds, it provides methodological guides to this rapidly growing field. Qing Li and Yiu-Wing Mai are both professors at the University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering.




Active Implants and Scaffolds for Tissue Regeneration


Book Description

Active implants are actually drug or protein-eluting implants that induce healing effects, in addition to their regular task, such as support. This effect is achieved by controlled release of the active agent to the surrounding tissue. This book will give a broad overview of biomaterial platforms used as basic elements of drug-eluting implants. It will include mainly coatings for vascular stents with controlled release of antiproliferative agents, wound dressings with controlled release of antibacterial agents, drug-eluting vascular grafts, protein-eluting scaffolds for tissue regeneration, drug-eluting platforms for dental and other applications. Thus, both internal and external implants are described. The drug-eluting implants will be described in terms of matrix formats and polymers, incorporated drugs and their release profiles from the implants, as well as implant functioning. Smart polymeric systems, such as crosslinked poly-lactones, thermo and pH-sensitive hydrogels and poly(amido-amines), as well as novel basic structural elements, such as composite fibers and films, and nanostructures will be thoroughly described. The effect of the processing parameters on the microstructure and on the resulting drug release profiles, mechanical and physical properties, and other relevant properties, will be emphasized. The described new biomaterials approaches for active implants enhance the tools available for creating clinically important biomedical applications.




Bone Tissue Engineering


Book Description

Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t




Smart Biomaterials


Book Description

This book provides comprehensive coverage of smart biomaterials and their potential applications, a field that is developing at a very rapid pace. Because smart biomaterials are an emerging class of biomaterials that respond to small changes in external stimuli with large discontinuous changes in their physical properties, they have been designed to act as an “on–off” switch for, among others, bio separation, immunoanalysis, drug delivery technologies, gene therapy, diagnostics, bio sensors and artificial muscles. After an introduction to the topic and the history of smart biomaterials, the author gives the reader an in-depth look at the properties, mechanics, and characterization of smart biomaterials including hydrogels, particles, assemblies, surfaces, fibers and conjugates. Information on the wide range of applications for these materials follows, including drug delivery, tissue engineering, diagnostics, biosensors, bio separation and actuators. In addition, recent advances in shape memory biomaterials as active components of medical devices are also presented.




Bone Substitute Biomaterials


Book Description

Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic polymer composites, and marine organisms.




Structural Biomaterials


Book Description

Structural Biomaterials: Properties, Characteristics, and Selection serves as a single point of reference to digest current research and develop a deeper understanding in the field of biomaterials engineering. This book uses a materials-focused approach, allowing the reader to quickly access specific, detailed information on biomaterials characterization and selection. Relevant to a range of readers, this book provides holistic coverage of the broad categories of structural biomaterials currently available and used in medical applications, highlighting the property requirements for structural biomaterials, their biocompatibility performance and their safety regulation in key categories such as metals, ceramics and polymers. The materials science perspective of this text ensures the content is accessible even to those without an extensive background in applied medicine, positioning this text not just for students, but as an overview and reference for researchers, scientists and engineers entering the field from related materials science disciplines. - Provides a unique, holistic approach, covering key biomaterials categories in one text, including metals, ceramics and polymers - Discusses advantages, disadvantages, biocompatibility performance and safety regulations, allowing for accurate materials selection in medical applications - Utilizes a materials science perspective, allowing those without an extensive applied medical background to learn about the field




Cell Culture Technology


Book Description

This textbook provides an overview on current cell culture techniques, conditions, and applications specifically focusing on human cell culture. This book is based on lectures, seminars and practical courses in stem cells, tissue engineering, regenerative medicine and 3D cell culture held at the University of Natural Resources and Life Sciences Vienna BOKU and the Gottfried Wilhelm Leibniz University Hannover, complemented by contributions from international experts, and therefore delivers in a compact and clear way important theoretical, as well as practical knowledge to advanced graduate students on cell culture techniques and the current status of research. The book is written for Master students and PhD candidates in biotechnology, tissue engineering and biomedicine working with mammalian, and specifically human cells. It will be of interest to doctoral colleges, Master- and PhD programs teaching courses in this area of research.




Biomaterials in Regenerative Medicine


Book Description

The book Biomaterials in Regenerative Medicine is addressed to the engineers and mainly medical practitioners as well as scientists and PhD degree students. The book indicates the progress in research and in the implementation of the ever-new biomaterials for the application of the advanced types of prosthesis, implants, scaffolds and implant-scaffolds including personalised ones. The book presents a theoretical approach to the synergy of technical, biological and medical sciences concerning materials and technologies used for medical and dental implantable devices and on metallic biomaterials. The essential contents of the book are 16 case studies provided in each of the chapters, comprehensively describing the authors' accomplishments of numerous teams from different countries across the world in advanced research areas relating to the biomaterials applied in regenerative medicine and dentistry. The detailed information collected in the book, mainly deriving from own and original research and R




Handbook of Biomaterial Properties


Book Description

This book provides tabular and text data relating to normal and diseased tissue materials and materials used in medical devices. Comprehensive and practical for students, researchers, engineers, and practicing physicians who use implants, this book considers the materials aspects of both implantable materials and natural tissues and fluids. Examples of materials and topics covered include titanium, elastomers, degradable biomaterials, composites, scaffold materials for tissue engineering, dental implants, sterilization effects on material properties, metallic alloys, and much more. Each chapter author considers the intrinsic and interactive properties of biomaterials, as well as their appropriate applications and historical contexts. Now in an updated second edition, this book also contains two new chapters on the cornea and on vocal folds, as well as updated insights, data, and citations for several chapters.




Service Characteristics Of Biomedical Materials And Implants


Book Description

A wide variety of materials is being used in biomedical engineering for various functions. This includes a range of ceramics, polymers and metallic materials for implants and medical devices. A major question is how these materials will perform inside the body, which is very sensitive to alien materials. The material must not only survive to perform its intended function but also not initiate any damage to the surrounding tissue or induce a wider health problem. The service characteristics of implanted materials are of vital concern to health treatments that alleviate ageing.This book collates information and provides a concise text on the performance of different materials used in devices and implants. The knowledge presented is critical for a biomedical engineer, especially for the purpose of selecting the right materials. In addition, topics such as allergies and infection, tissue scaffolds, and drug delivery are reviewed.