Stem Cells and Biomaterials for Regenerative Medicine


Book Description

Stem Cells and Biomaterials for Regenerative Medicine addresses the urgent need for a compact source of information on both the cellular and biomaterial aspects of regenerative medicine. By developing a mutual understanding between three separately functioning areas of science—medicine, the latest technology, and clinical economics—the volume encourages interdisciplinary relationships that will lead to solutions for the significant challenges faced by today's regenerative medicine. Users will find sections on the homeostatic balance created by apoptosis and proliferating tissue stem cells, the naturally regenerative capacities of various tissue types, the potential regenerative benefits of iPS-generation, various differentiation protocols, and more. Written in easily accessbile language, this volume is appropriate for any professional or medical staff looking to expand their knowledge with regard to stem cells and regenerative medicine. - Arms readers with key information on tissue engineering, artificial organs and biomaterials, while using broadly accessible language - Provides broad introduction to, and examples of, various types of stem cells, core concepts of regenerative medicine, biomaterials, nanotechnology and nanomaterials, somatic cell transdyferentiation, and more - Edited and authored by researchers with expertise in regenerative medicine, (cancer) stem cells, biomaterials, genetics and nanomaterials




Biomaterials and Stem Cells in Regenerative Medicine


Book Description

Work in the area of biomaterials and stem cell therapy has revealed great potential for many applications, from the treatment of localized defects and diseases to the repair and replacement of whole organs. Researchers have also begun to develop a better understanding of the cellular environment needed for optimal tissue repair and regeneration. Bi




Progenitor and Stem Cell Technologies and Therapies


Book Description

Progenitor and stem cells have the ability to renew themselves and change into a variety of specialised types, making them ideal materials for therapy and regenerative medicine. Progenitor and stem cell technologies and therapies reviews the range of progenitor and stem cells available and their therapeutic application.Part one reviews basic principles for the culture of stem cells before discussing technologies for particular cell types. These include human embryonic, induced pluripotent, amniotic and placental, cord and multipotent stem cells. Part two discusses wider issues such as intellectual property, regulation and commercialisation of stem cell technologies and therapies. The final part of the book considers the therapeutic use of stem and progenitor cells. Chapters review the use of adipose tissue-derived stem cells, umbilical cord blood (UCB) stem cells, bone marrow, auditory and oral cavity stem cells. Other chapters cover the use of stem cells in therapies in various clinical areas, including lung, cartilage, urologic, nerve and cardiac repair.With its distinguished editor and international team of contributors, Progenitor and stem cell technologies and therapies is a standard reference for both those researching in cell and tissue biology and engineering as well as medical practitioners investigating the therapeutic use of this important technology. - Reviews the range of progenitor and stem cells available and outlines their therapeutic application - Examines the basic principles for the culture of stem cells before discussing technologies for particular cell types, including human embryonic, induced pluripotent, amniotic and placental, cord and multipotent stem cells - Includes a discussion of wider issues such as intellectual property, regulation and commercialisation of stem cell technologies and therapies




In Situ Tissue Regeneration


Book Description

In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design explores the body's ability to mobilize endogenous stem cells to the site of injury and details the latest strategies developed for inducing and supporting the body's own regenerating capacity. From the perspective of regenerative medicine and tissue engineering, this book describes the mechanism of host cell recruitment, cell sourcing, cellular and molecular roles in cell differentiation, navigational cues and niche signals, and a tissue-specific smart biomaterial system that can be applied to a wide range of therapies. The work is divided into four sections to provide a thorough overview and helpful hints for future discoveries: endogenous cell sources; biochemical and physical cues; smart biomaterial development; and applications. - Explores the body's ability to mobilize endogenous stem cells to the site of injury - Details the latest strategies developed for inducing and supporting the body's own regenerating capacity - Presents smart biomaterials in cell-based tissue engineering applications—from the cell level to applications—in the first unified volume - Features chapter authors and editors who are authorities in this emerging field - Prioritizes a discussion of the future direction of smart biomaterials for in situ tissue regeneration, which will affect an emerging and lucrative industry




Stem Cell Biology and Tissue Engineering in Dental Sciences


Book Description

Stem Cell Biology and Tissue Engineering in Dental Sciences bridges the gap left by many tissue engineering and stem cell biology titles to highlight the significance of translational research in this field in the medical sciences. It compiles basic developmental biology with keen focus on cell and matrix biology, stem cells with relevance to tissue engineering biomaterials including nanotechnology and current applications in various disciplines of dental sciences; viz., periodontology, endodontics, oral & craniofacial surgery, dental implantology, orthodontics & dentofacial orthopedics, organ engineering and transplant medicine. In addition, it covers research ethics, laws and industrial pitfalls that are of particular importance for the future production of tissue constructs. Tissue Engineering is an interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. This ever-emerging area of research applies an understanding of normal tissue physiology to develop novel biomaterial, acellular and cell-based technologies for clinical and non-clinical applications. As evident in numerous medical disciplines, tissue engineering strategies are now being increasingly developed and evaluated as potential routine therapies for oral and craniofacial tissue repair and regeneration. - Diligently covers all the aspects related to stem cell biology and tissue engineering in dental sciences: basic science, research, clinical application and commercialization - Provides detailed descriptions of new, modern technologies, fabrication techniques employed in the fields of stem cells, biomaterials and tissue engineering research including details of latest advances in nanotechnology - Includes a description of stem cell biology with details focused on oral and craniofacial stem cells and their potential research application throughout medicine - Print book is available and black and white, and the ebook is in full color




Biomaterials from Nature for Advanced Devices and Therapies


Book Description

In-depth information on natural biomaterials and their applications for translational medicine! Undiluted expertise: edited by world-leading experts with contributions from top-notch international scientists, collating experience and cutting-edge knowledge on natural biomaterials from all over the world A must-have on the shelf in every biomaterials lab: graduate and PhD students beginning their career in biomaterials science and experienced researchers and practitioners alike will turn to this comprehensive reference in their daily work Link to clinical practice: chapters on translational research make readers aware of what needs to be considered when a biomaterial leaves the lab to be routinely used




Biomimetic Medical Materials


Book Description

This volume outlines the current status in the field of biomimetic medical materials and illustrates research into their applications in tissue engineering. The book is divided into six parts, focusing on nano biomaterials, stem cells, tissue engineering, 3D printing, immune responses and intellectual property. Each chapter has its own introduction and outlines current research trends in a variety of applications of biomimetic medical materials. The biomimetic medical materials that are covered include functional hydrogels, nanoparticles for drug delivery and medicine, the 3D bioprinting of biomaterials, sensor materials, stem cell interactions with biomaterials, immune responses to biomaterials, biodegradable hard scaffolds for tissue engineering, as well as other important topics, like intellectual property. Each chapter is written by a team of experts. This volume attempts to introduce the biomimetic properties of biomedical materials within the context of our current understanding of the nanotechnology of nanoparticles and fibres and the macroscopic aspects of 3D bioprinting.




Stem Cell Regulators


Book Description

First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. The Editorial Board now reflects expertise in the field of hormone action, vitamin action, X-ray crystal structure, physiology and enzyme mechanisms. Under the capable and qualified editorial leadership of Dr. Gerald Litwack, Vitamins and Hormones continues to publish cutting-edge reviews of interest to endocrinologists, biochemists, nutritionists, pharmacologists, cell biologists and molecular biologists. Others interested in the structure and function of biologically active molecules like hormones and vitamins will, as always, turn to this series for comprehensive reviews by leading contributors to this and related disciplines. This volume focuses on stem cell regulators. - Longest running series published by Academic Press - Contributions by leading international authorities




Principles of Regenerative Medicine


Book Description

Virtually any disease that results from malfunctioning, damaged, or failing tissues may be potentially cured through regenerative medicine therapies, by either regenerating the damaged tissues in vivo, or by growing the tissues and organs in vitro and implanting them into the patient. Principles of Regenerative Medicine discusses the latest advances in technology and medicine for replacing tissues and organs damaged by disease and of developing therapies for previously untreatable conditions, such as diabetes, heart disease, liver disease, and renal failure. - Key for all researchers and instituions in Stem Cell Biology, Bioengineering, and Developmental Biology - The first of its kind to offer an advanced understanding of the latest technologies in regenerative medicine - New discoveries from leading researchers on restoration of diseased tissues and organs




Engineering Materials for Stem Cell Regeneration


Book Description

This book reviews the interface of stem cell biology and biomaterials for regenerative medicine. It presents the applications of biomaterials to support stem cell growth and regeneration. The book discusses the stem cell interactions’ with nanofiber, gradient biomaterial, polymer- and ceramic biomaterials, integrating top-down and bottom-up approaches, adhesive properties of stem cells on materials, cell-laden hydrogels, micro-and nanospheres, de-cellularization techniques, and use of porous scaffolds. Further, this book provides a basic introduction to the fabrication techniques for creating various biomaterials that can be used for stem cell differentiation. It also elucidates the properties of stem cells, their characteristic features, tissue culture technology, properties of pluripotency, osteogenesis, and biomaterial interaction with de-cellularized organs, cell lineage in vivo and in vitro, gene expression, embryonic development, and cell differentiation. Further, the book reviews the latest applications of bio-instructive scaffold for supporting stem cell differentiation and tissue regeneration. The book also presents stem cell for dental, alveolar bone and cardiac regeneration. Lastly, it introduces engineered stem cells for delivering small molecule therapeutics and their potential biomedical applications.