Biomechatronics in Medicine and Healthcare


Book Description

This book presents experts’ insights into the emerging technologies and developments that are being or will be utilized in the medical profession to meet a variety of clinical challenges. It demonstrates the application of biomechatronics to provide better care and service. It also incorporates new and exciting multidisciplinary areas of research across the medical and engineering fields, such as robotic therapeutic training system for stroke rehabilitation, exoskeletons for daily activities on persons with disability, functional electrical stimulation, and wireless active capsule endoscopy. Each chapter provides substantial background material relevant to the particular subject.




Mechatronics in Medicine A Biomedical Engineering Approach


Book Description

Cutting-edge coverage of mechatronics in medical systems Mechatronics in Medicine: A Biomedical Engineering Approach describes novel solutions for utilizing mechatronics to design innovative, accurate, and intelligent medical devices and optimize conventional medical instruments. After an introduction to mechatronics, the book addresses sensing technologies, actuators and feedback sensors, mechanisms and mechanical devices, and processing and control systems. Artificial intelligence, expert systems, and medical imaging are also covered. This pioneering guide concludes by discussing applications of mechatronics in medicine and biomedical engineering and presenting seven real-world medical case studies. In-depth details on: Sensing technology Electromechanical, fluid, pneumatic power, and other types of actuators Feedback sensors Mechanisms, mechanical devices, and their functions Principles and methods of processing and controlling mechatronics systems Artificial intelligence, expert systems, artificial neural networks, fuzzy systems, and neuro fuzzy systems Medical imaging, including ultrasound, MRI, CT scan, and nuclear imaging Medical case studies in mechatronics




Biomechatronics in Medical Rehabilitation


Book Description

This book focuses on the key technologies in developing biomechatronic systems for medical rehabilitation purposes. It includes a detailed analysis of biosignal processing, biomechanics modelling, neural and muscular interfaces, artificial actuators, robot-assisted training, clinical setup/implementation and rehabilitation robot control. Encompassing highly multidisciplinary themes in the engineering and medical fields, it presents researchers’ insights into the emerging technologies and developments that are being utilized in biomechatronics for medical purposes. Presenting a detailed analysis of five key areas in rehabilitation robotics: (i) biosignal processing; (ii) biomechanics modelling; (iii) neural and muscular interfaces; (iv) artificial actuators and devices; and (v) the use of neurological and muscular interfaces in rehabilitation robots control, the book describes the design of biomechatronic systems, the methods and control systems used and the implementation and testing in order to show how they fulfil the needs of that specific area of rehabilitation. Providing a comprehensive overview of the background of biomechatronics and details of new advances in the field, it is especially useful for researchers, academics and graduates new to the field of biomechatronics engineering, and is also of interest to researchers and clinicians in the medical field who are not engineers.




Future of Health Technology


Book Description

This text provides a comprehensive vision of the future of health technology by looking at the ways to advance medical technologies, health information infrastructure and intellectual leadership. It also explores technology creations, adoption processes and the impact of evolving technologies.




Wearable Technology in Medicine and Health Care


Book Description

Wearable Technology in Medicine and Health Care provides readers with the most current research and information on the clinical and biomedical applications of wearable technology. Wearable devices provide applicability and convenience beyond many other means of technical interface and can include varying applications, such as personal entertainment, social communications and personalized health and fitness. The book covers the rapidly expanding development of wearable systems, thus enabling clinical and medical applications, such as disease management and rehabilitation. Final chapters discuss the challenges inherent to these rapidly evolving technologies. Provides state-of-the-art coverage of the latest advances in wearable technology and devices in healthcare and medicine Presents the main applications and challenges in the biomedical implementation of wearable devices Includes examples of wearable sensor technology used for health monitoring, such as the use of wearables for continuous monitoring of human vital signs, e.g. heart rate, respiratory rate, energy expenditure, blood pressure and blood glucose, etc. Covers examples of wearables for early diagnosis of diseases, prevention of chronic conditions, improved clinical management of neurodegenerative conditions, and prompt response to emergency situations




Introduction to Biomechatronics


Book Description

Introduction to Biomechatronics provides biomedical engineering students and professionals with the fundamental mechatronic (mechanics, electronics, robotics) engineering knowledge they need to analyze and design devices that improve lives.




Medical and Healthcare Robotics


Book Description

Medical and Healthcare Robotics: New Paradigms and Recent Advances provides an overview and exclusive insights into current trends, the most recent innovations, and concerns in medical robotics. The book covers the major areas of medical robotics, including rehabilitation devices, artificial organs, assistive technologies, service robotics, and robotic devices for surgery, exploration, diagnosis, therapy, and training. It highlights the limitations and the importance of robotics and artificial intelligence for medical and healthcare applications. The book is a timely and comprehensive reference guide for undergraduate-level students, graduate students, and researchers in the fields of electrical engineering, mechanical engineering, mechatronics, control systems engineering, and biomedical engineering. It can be useful for master’s programs, leading consultants, and industrial companies. The book can be of high interest for physicians and physiotherapists and all technical people in the medical and biomedical fields. Covers the main areas of medical and healthcare robotics Presents the most recent innovations and trends in medical and healthcare robotics Contains chapters written by eminent researchers in the field




New Trends in Medical and Service Robotics


Book Description

This book contains the selected papers of the Sixth International Workshop on Medical and Service Robots (MESROB 2018), held in Cassino, Italy, in 2018. The main topics of the workshop include: design of medical devices, kinematics and dynamics for medical robotics, exoskeletons and prostheses, anthropomorphic hands , therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, haptic devices, and medical treatments.




Technological Advancements in Biomedicine for Healthcare Applications


Book Description

Technology continues to play a major role in all aspects of society, particularly healthcare. Advancements such as biomedical image processing, technology in rehabilitation, and biomedical robotics for healthcare have aided in significant strides in the biomedical engineering research field. Technological Advancements in Biomedicine for Healthcare Applications presents an overview of biomedical technologies and its relationship with healthcare applications. This reference source is essential for researchers and practitioners aiming to learn more about biomedical engineering and its related fields.




Wearable Robots


Book Description

A wearable robot is a mechatronic system that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. Teleoperation and power amplification were the first applications, but after recent technological advances the range of application fields has widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control. Logical in structure and original in its global orientation, this volume gives a full overview of wearable robotics, providing the reader with a complete understanding of the key applications and technologies suitable for its development. The main topics are demonstrated through two detailed case studies; one on a lower limb active orthosis for a human leg, and one on a wearable robot that suppresses upper limb tremor. These examples highlight the difficulties and potentialities in this area of technology, illustrating how design decisions should be made based on these. As well as discussing the cognitive interaction between human and robot, this comprehensive text also covers: the mechanics of the wearable robot and it’s biomechanical interaction with the user, including state-of-the-art technologies that enable sensory and motor interaction between human (biological) and wearable artificial (mechatronic) systems; the basis for bioinspiration and biomimetism, general rules for the development of biologically-inspired designs, and how these could serve recursively as biological models to explain biological systems; the study on the development of networks for wearable robotics. Wearable Robotics: Biomechatronic Exoskeletons will appeal to lecturers, senior undergraduate students, postgraduates and other researchers of medical, electrical and bio engineering who are interested in the area of assistive robotics. Active system developers in this sector of the engineering industry will also find it an informative and welcome resource.