Vibrational Spectroscopy Applications in Biomedical, Pharmaceutical and Food Sciences


Book Description

Vibrational Spectroscopy Applications in Biomedical, Pharmaceutical and Food Sciences synthesizes the latest research on the applications of vibrational spectroscopy in biomedical, pharmaceutical and food analysis. Suitable for graduate-level students as well as experienced researchers in academia and industry, this book is organized into five distinct sections. The first deals with the fundamentals of vibrational spectroscopy, with the second presenting the most important sampling methodology used for infrared and Raman spectroscopy in various fields of interest. Since spectroscopy is the study of the interaction of electromagnetic radiation with matter, this section deals with the characteristics, properties and absorption of electromagnetic radiation. Final sections describe the analytical studies performed all over the world in biomedical, pharmaceutical and in the food sciences. - Presents a critical discussion of many of the applications of vibrational spectroscopy - Covers details of the analytical methodologies used in pharmaceutical and biomedical applications - Discusses the latest developments in pharmaceutical and biomedical analysis of both small and large molecules




Derivative Spectroscopy


Book Description

This book will appeal to both practitioners and researchers in both industrial and university chemical, bio-pharmaceutical, and physical, analytical laboratories, and students specializing in analytical spectroscopy, bio-pharmaceutical analysis, chemometrics, and laser physics. It sums up the results of more than half a century of research in derivative spectroscopy, including numerical differentiation and optical modulation techniques. The bibliography also briefly describes hundreds of derivative spectroscopic (classic optical and laser) and non-spectroscopic (chromatography, electrochemistry, and other) methods in industrial and research laboratories. This book differs from existing studies on the subject in that it offers, for the first time, the big picture of all kinds of spectroscopic and non-spectroscopic derivative methods. Also, the book provides quickly reproducible computer calculations illustrating its significant theoretical statements. As such, it can also serve as a practical guide to lecturers in analytical chemistry, chemometrics, and spectroscopy.




Biophotonics and Biosensing


Book Description

Biophotonics and Biosensing: From Fundamental Research to Clinical Trials Through Advances of Signal and Image Processing brings together the knowledge of the basic principles of the field of light-biological tissue interaction, detection methods, data processing techniques, and research, diagnostic and clinical applications. It is suitable for new entrants, while also highlighting the latest developments for experts in the field. This volume includes perspectives by leading experts from the biophotonics, biomedical engineering, and data science communities. The reader will receive a basic grounding in the key theoretical principles and practical components of biophotonics and biosensing. Working principles of devices used in spectroscopy, microscopy, and optical sensing are presented along with their application domains. The reader will learn about existing microscopy-based techniques used in biomedical applications for diagnosis and get to know different signal processing algorithms as used in biophotonics. Finally, through concrete examples, including sample preparation and measurement approaches, see how the field has developed thanks to the integration of biophotonics and optical biosensing with signal processing. - Introduces key principles of light-biological tissue interactions and biosensing - Discusses how the most promising optical diagnostic methods can exploit contemporary signal and image processing algorithms and data analytics - Includes examples of clinical studies with detailed descriptions of their implementation, along with practical guidance




Vibrational Spectroscopy in Protein Research


Book Description

Vibrational Spectroscopy in Protein Research offers a thorough discussion of vibrational spectroscopy in protein research, providing researchers with clear, practical guidance on methods employed, areas of application, and modes of analysis. With chapter contributions from international leaders in the field, the book addresses basic principles of vibrational spectroscopy in protein research, instrumentation and technologies available, sampling methods, quantitative analysis, origin of group frequencies, and qualitative interpretation. In addition to discussing vibrational spectroscopy for the analysis of purified proteins, chapter authors also examine its use in studying complex protein systems, including protein aggregates, fibrous proteins, membrane proteins and protein assemblies. Emphasis throughout the book is placed on applications in human tissue, cell development, and disease analysis, with chapters dedicated to studies of molecular changes that occur during disease progression, as well as identifying changes in tissues and cells in disease studies. - Provides thorough guidance in implementing cutting-edge vibrational spectroscopic methods from international leaders in the field - Emphasizes in vivo, in situ and non-invasive analysis of proteins in biomedical and life science research more broadly - Contains chapters that address vibrational spectroscopy for the study of simple purified proteins and protein aggregates, fibrous proteins, membrane proteins and protein assemblies




Biomedical Vibrational Spectroscopy


Book Description

This comprehensive overview of biomedical applications of vibrational spectroscopy focuses on methodologies that are most relevant to biodiagnostics. After a few introductory chapters that summarize the current status of the field, the reference covers current spectroscopic applications; new spectroscopic directions; and study design and the analysis of vibrational spectral fingerprints from complex biological and clinical samples . With chapters contributed by leading international experts, Biomedical Vibrational Spectroscopy is a core resource.




Vibrational Spectroscopy in Protein Research


Book Description

Vibrational Spectroscopy in Protein Research offers a thorough discussion of vibrational spectroscopy in protein research, providing researchers with clear, practical guidance on methods employed, areas of application, and modes of analysis. With chapter contributions from international leaders in the field, the book addresses basic principles of vibrational spectroscopy in protein research, instrumentation and technologies available, sampling methods, quantitative analysis, origin of group frequencies, and qualitative interpretation. In addition to discussing vibrational spectroscopy for the analysis of purified proteins, chapter authors also examine its use in studying complex protein systems, including protein aggregates, fibrous proteins, membrane proteins and protein assemblies. Emphasis throughout the book is placed on applications in human tissue, cell development, and disease analysis, with chapters dedicated to studies of molecular changes that occur during disease progression, as well as identifying changes in tissues and cells in disease studies.







Nanotechnology for Infectious Diseases


Book Description

This book aims to cover the applications of nanotechnology against human infectious diseases. The chapters of the book discuss the role of nanotechnology in the efficient diagnosis and treatment of these diseases. It explicitly provides an overview of nanodiagnostics for infectious diseases from nanoparticles-based, nanodevice-based, and point-of-care platforms. The book also covers the state-of-the-art review of recent progress in biomimetic and bioengineered nanotherapies to treat infectious diseases. It also presents a nano carrier-based CRISPR/Cas9 delivery system for gene editing and its applications for developing interventional approaches against communicable diseases. Further, it reviews the recent developments in nanotechnology to engineer nanoparticles with desired physicochemical properties as a line of defense against multi-drug resistance micro-organisms. Cutting across the disciplines, this book serves as a guide for researchers in biotechnology, parasitology, and nanotechnology.




Nanobiosensors for Environmental Monitoring


Book Description

This book entails detailed information on the utilization of nanobiosensor as an effective technology for the effective detection, monitoring, and management of environmental contaminations to ensure its sustainability and humanity's well-being. The higher level of anthropogenic action has been identified as a threat to humankind's existence due to the higher level of xenobiotic and toxic substances that could interrupt the normal ecosystem. This has prompted numerous agencies both locally and internationally that could play a significant role in environmental pollution mitigation. The application of nanobiosensor has been identified as a sustainable technique that could be applied to ensure proper detection and identification of several environmental contaminants. Nanomaterial’s possible applications created an innovative domain called nanomaterials based biosensors machinery as one of nanotechnology's ultimate sub-divisions. The application of nanomaterials based biosensors machinery and their advancements could be applied globally to resolve numerous environmental sectors' challenges to guarantee the environment's quality and safety. The book will be an excellent collection of reviews based on contemporary research and developments on nanomaterials utilization and applications in environmental monitoring along with their prospects. The book will attempt to give a comprehensive idea of nanomaterial concepts for nanobiosensors applications in an environmental context to help students, researchers, and professionals/practitioners recognize nanomaterials' significance in the environmental domain. The book will also help understand and address the environmental sectors' complications via nanomaterials' utilization and applications. Hence, this book will serve as a textbook and will help students, professionals/practitioners, scientists, researchers, and academicians in various research domains.