Synthesis of Marine Natural Products 2


Book Description

Volumes five and six of Bioorganic Marine Chemistry differ from their predecessors in two respects - they deal exclusively with laboratory synthesis of marine natural products and they represent the effort of a single author and his associates. The rationale for these departures is readily perceived. For several decades organic synthesis has without doubt been the most spectacular branch of organic chemistry. While the late R.B. Woodward's dictum - organic compounds can undergo only four basic reactions: they can gain electrons; they can lose electrons; they can be transformed with acid or with base - is still true, the wealth and variety of available reagents which will accomplish chemical transformations has reached staggering proportions. Little wonder then, that synthetic methodology has achieved a high degree of predictability and total synthesis of natural products has been successfully directed toward ever more challenging targets. As for the second point, that of single authorship, multiple authorship would invariably have led to gaps and overlaps, thus making it difficult to assemble and assess recent research in a systematic and comprehens ive fashion.




Synthesis of Marine Natural Products 1


Book Description

Volumes five and six of Bioorganic Marine Chemistry differ from their predecessors in two respects - they deal exclusively with labor atory synthesis of marine natural products and they represent the effort of a single author and his associates. The rationale for these departures is readily perceived. For several decades organic synthesis has without doubt been the most spectacular branch of organic chemistry. While the late R.B. Woodward's dictum - organic compounds can undergo only four basic reactions: they can gain electrons; they can lose electrons; they can be transformed with acid or with base - is still true, the wealth and variety of available reagents which will accomplish chemical transformations has reached staggering proportions. Little wonder then, that synthetic methodology has achieved a high degree of predictability and total synthesis of natural products has been successfully directed toward ever more challenging targets. As for the second point, that of single authorship, multiple authorship would invariably have led to gaps and overlaps, thus making it difficult to assemble and assess recent research in a systematic and comprehens ive fashion.




Synthesis of Marine Natural Products 2


Book Description

Volumes five and six of Bioorganic Marine Chemistry differ from their predecessors in two respects - they deal exclusively with laboratory synthesis of marine natural products and they represent the effort of a single author and his associates. The rationale for these departures is readily perceived. For several decades organic synthesis has without doubt been the most spectacular branch of organic chemistry. While the late R.B. Woodward's dictum - organic compounds can undergo only four basic reactions: they can gain electrons; they can lose electrons; they can be transformed with acid or with base - is still true, the wealth and variety of available reagents which will accomplish chemical transformations has reached staggering proportions. Little wonder then, that synthetic methodology has achieved a high degree of predictability and total synthesis of natural products has been successfully directed toward ever more challenging targets. As for the second point, that of single authorship, multiple authorship would invariably have led to gaps and overlaps, thus making it difficult to assemble and assess recent research in a systematic and comprehens ive fashion.




Synthesis of Marine Natural Products 1


Book Description

This review is devoted to a compilation of the domain of na- tural product synthesis that involves metabolites from mari- ne organisms. The vast amountof material has been roughly organized along structural-biogenetic lines into two volu- mes: the first covers all terpenoid derived structures, the second nonterpenoid (amino acid, heterocyclic, fatty acid and other miscellaneous derived) metabolites. For each metabolite the source is discussed and some of the properties are described that make the compound attractive to synthesis chemists. These are mainly the substances' bio- logical, e.g. antitumor and antiviral activities.




The Way of Synthesis


Book Description

This two-colored textbook presents not only synthetic ways to design organic compounds, it also contains a compilation of the most important total synthesis of the last 50 years with a comparative view of multiple designs for the same targets. It explains different tactics and strategies, making it easy to apply to many problems, regardless of the synthetic question in hand. Following a historical view of the evolution of synthesis, the book goes on to look at principles and issues impacting synthesis and design as well as principles and issues of methods. The sections on comparative design cover classics in terpenes and alkaloid synthesis, while a further section covers such miscellaneous syntheses as Maytansine, Palytoxin, Brevetoxin B and Indinavir. The whole is rounded off with a look at future perspectives and, what makes this textbook extraordinairy, with personal recollections of the chemists, who synthesized these fascinating compounds. With its attractive layout highlighting key parts and tactics using a second color, this is a useful tool for organic chemists, lecturers and students in chemistry, as well as those working in the chemical industry. "I think, as will many organic chemists, that the Hudlicky book will be the Bible of synthetic organic chemistry, the past, the present and the future. A hallmark publication." (Victor Snieckus)







Whitaker's Books in Print


Book Description







Natural Antimicrobial Agents


Book Description

Documenting the latest research in the field of different pathogenic organisms, this book presents the current scenario about promising antimicrobials in the following areas: Part I. Plants as source of antibacterials, Part II. Naturally occurring antifungal natural products, Part III. Antiparasitic natural products, Part IV. Antiviral natural products. Renowned scientists from the globe have been selected as authors to contribute chapters. Use of plants for various ailments is as old as human civilization and continuous efforts are being made to improve medicinal plants or to product their bioactive secondary metabolites in high amounts through various technologies. About 200,000 natural products of plant origin are known and many more are being identified from higher plants and micro-organisms. Some plants based drugs are used since centuries and there is no alternative medicine for many such drugs as cardiac glycosides. Drug discovery from medicinal plants or marine micro-organisms continues to provide an important source of new drug leads. Research on new antibacterials represents a real and timely challenge of this century, particularly for the treatment of infections caused by clinical isolates that show multidrug resistance. The main microorganisms involved in the resistance process have been identified and given the acronym ESKAPE for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacteriaceae. Multidrug resistant Mycobacterium tuberculosis including highly drug-resistant strains (XDR-TB) has also emerged as one of the most important clinical challenges of this century. Plants of diverse taxa and marine micro-organisms are rich source of these antimicrobials. An attempt has been made to compile the recent information about natural sources of antibacterials and their sustainable utilization. Increased panic of these pathogens warrants a growing demand for research to undertake the threat of multidrug resistance. The search for new antifungal, antiparasitic and antiviral natural products is far from devoid of interest. According to the WHO report in 2013, malaria still represents some 207 million cases worldwide and more than 3 billion of people are still exposed to this risk. Similarly, about 350 million people are considered at risk of contracting leishmaniasis. The fight against some viruses also requires that the research on natural products continue. For example, even if an antiretroviral with direct action was recently approved in Europe in 2013, its high cost does not allow to offer it to an exposed population in countries where the cost of drugs remains a problem for a large part of the population. These books are useful to researchers and students in microbiology, biotechnology, pharmacology, chemistry and biology as well as medical professionals.




Progress in the Chemistry of Organic Natural Products 102


Book Description

The first contribution reviews the phytochemical, chemical, and biological literature on members of the ingenane class of diterpenoids from their first isolation in 1968 through 2015, highlighting unresolved issues both common to phorboids and specific to ingenol derivatives. The biogenesis of ingenol is discussed in the light of the Jakupovic proposal of a dissection between the formation of the macrocyclic Euphorbia diterpenoids and the phorboids, and the clinical development of ingenol mebutate is chronicled in the light of its “reverse-pharmacology” focus. The second contribution offers a comprehensive view of the chemical wealth and the taxonomic problems currently impeding chemical and biological investigations of the genus Laurencia. It addresses the botanical description and the growth and population dynamics of the genus, as well as its chemical diversity and ecological relations; the secondary metabolites as well as their sources of isolation; and finally the biological activity.