Environmental Pollutants and their Bioremediation Approaches


Book Description

This book is a compilation of detailed and latest knowledge on the various types of environmental pollutants released from various natural as well as anthropogenic sources, their toxicological effects in environments, humans, animals and plants as well as various bioremediation approaches for their safe disposal into the environments. In this book, an extensive focus has been made on the various types of environmental pollutants discharged from various sources, their toxicological effects in environments, humans, animals and plants as well as their biodegradation and bioremediation approaches for environmental cleanup.




Bioremediation for Environmental Sustainability


Book Description

Bioremediation for Environmental Sustainability: Approaches to Tackle Pollution for Cleaner and Greener Society discusses many recently developed and successfully applied bio/phytoremediation technologies for pollution control and minimization, which are lacking more comprehensive coverage in previous books. This book describes the scope and applications of bio/phytoremediation technologies and especially focuses on the associated eco-environmental concerns, field studies, sustainability issues, and future prospects. The book also examines the feasibility of environmentally friendly and sustainable bio/phytoremediation technologies to remediate contaminated sites, as well as future directions in the field of bioremediation for environmental sustainability. Illustrates the importance of microbes and plants in bio/phytoremediation and wastewater treatment Includes chapters on original research outcomes pertaining to pollution, pollution abatement, and associated bioremediation technologies Covers emerging bioremediation technologies, including electro-bioremediation, microbial fuel cell, nano-bioremediation, constructed wetlands, and more Highlights key developments and challenges in bioremediation and phytoremediation technologies Describes the roles of relatively new approaches in bio/phytoremediation, including molecular engineering and omics technologies, microbial enzymes, biosurfactants, plant-microbe interactions, genetically engineered organisms, and more




Bioremediation of Environmental Pollutants


Book Description

This book collates the latest trends and technological advancements in bioremediation, especially for its monitoring and assessment. Divided into 18 chapters, the book summarizes basic concepts of waste management and bioremediation, describes advancements of the existing technologies, and highlights the role of modern instrumentation and analytical methods, for environmental clean-up and sustainability. The chapters cover topics such as the role of microbial fuel cells in waste management, microbial biosensors for real-time monitoring of bioremediation processes, genetically modified microorganisms for bioremediation, application of immobilized enzyme reactors, spectroscopic techniques, and in-silico approaches in bioremediation monitoring and assessment. The book will be advantageous not only to researchers and scholars interested in bioremediation and sustainability but also to professionals and policymakers.




Bioremediation for Environmental Sustainability


Book Description

Bioremediation for Environmental Sustainability: Toxicity, Mechanisms of Contaminants Degradation, Detoxification and Challenges introduces pollution and toxicity profiles of various organic and inorganic contaminants, including mechanisms of toxicity, degradation, and detoxification by microbes and plants, and their bioremediation approaches for environmental sustainability. The book also covers many advanced technologies in the field of bioremediation and phytoremediation, including electro-bioremediation, microbial fuel cells, nano-bioremediation, constructed wetlands, phytotechnologies, and many more, which are lacking in other competitive titles existing in the market. The book includes updated information, as well as future directions for research, in the field of bioremediation of industrial wastes. This book is a reference for students, researchers, scientists, and professionals in the fields of microbiology, biotechnology, environmental sciences, eco-toxicology, environmental remediation, and waste management, especially those who aspire to work on the biodegradation and bioremediation of industrial wastes and environmental pollutants for environmental sustainability. Environmental safety and sustainability with rapid industrialization is one of the major challenges worldwide. Industries are the key drivers in the world economy, but these are also the major polluters due to discharge of potentially toxic and hazardous wastes containing various organic and inorganic pollutants, which cause environmental pollution and severe toxic effects in living beings. Introduces pollution and toxicity profiles of environmental contaminants and industrial wastes, including oil refinery wastewater, distillery wastewater, tannery wastewater, textile wastewater, mine tailing wastes, plastic wastes, and more Describes underlying mechanisms of degradation and detoxification of emerging organic and inorganic contaminants with enzymatic roles Focuses on recent advances and challenges in bioremediation and phytoremediation, including microbial enzymes, biosurfactants, microalgae, biofilm, archaea, genetically engineered organisms, and more Describes how microbes and plants can be successfully applied for the remediation of potentially toxic industrial wastes and chemical pollutants to protect the environment and public health




Microbes for Sustainable Development and Bioremediation


Book Description

Microbes are the predominant form of life on the planet due to their broad range of adaptation and versatile nutritional behavior. The ability of some microbes to inhabit hostile environment incompatible with most forms of life means that their habitat defines the extent of the biosphere and delineates the barrier between the biosphere and geosphere. The direct and indirect role of microbes that include bacteria, fungi, actinomycetes, viruses, mycoplasma, and protozoans are very much important in development of modern human society for food, drugs, textiles, agriculture, and environment. Furthermore, microorganisms and their enzyme system are responsible for the degradation of various organic matters. Microbes for Sustainable Development and Bioremediation emphasizes the role of microbes for sustainable development of ecosystem. Environmental microbiology role in biogeochemical cycle and bioremediation of environmental waste is major theme, which comprises the following aspects: Bacterial phytoextraction mechanism of heavy metals by native hyperaccumulator plants from complex waste-contaminated site for eco-restoration Role of microbial enzyme for eco-friendly recycling of industrial waste Field-scale remediation of crude oil–contaminated desert soil and treatment technology Microbial technology for metal recovery from e-waste printed circuit board Impact of genomic data on sustainability of ecosystem Methane monooxygenases: their regulations and applications Role of microbes in environmental sustainability and food preservation This book will be directly beneficial to researchers and classroom students, in areas of biotechnology, environmental microbiology, molecular biology, and environmental engineering with specialized collection of cutting-edge knowledge.




Abatement of Environmental Pollutants


Book Description

Abatement of Environmental Pollutants: Trends and Strategies addresses new technologies and provides strategies for environmental scientists, microbiologists and biotechnologists to help solve problems associated with the treatment of industrial wastewater. The book helps readers solve pollution challenges using microorganisms in bioremediation technologies, including discussions on global technologies that have been adopted for the treatment of industrial wastewater and sections on the lack of proper management. Moreover, limited space, more stringent waste disposal regulations and public consciousness have made the present techniques expensive and impractical. Therefore, there is an urgent need to develop sustainable management technologies for industries and municipalities. To remove the damaging effect of organic pollutants on the environment, various new technologies for their degradation have been recently discovered. - Covers bioremediation of petrochemical pollutants, such as Benzene, Toluene, Xylene, Ethyl Benzene, and phenolic compound - Includes discussions on genetic engineering microbes and their potential in pollution abatement - Contains information on plant growth promoting bacteria and their role in environment management




Emerging Technologies in Environmental Bioremediation


Book Description

Environmental pollution increases day by day due to increases in population, industrialization and urbanization, posing a threat to human health. The risk of adverse effects on health and on the environment caused by pollution has driven international efforts to combat pollutants. Bioremediation is the most effective innovative technology that uses live naturally-occurring microorganisms to degrade environmental pollutants and prevent contamination. Emerging Technologies in Environmental Bioremediation introduces emerging bioremediation technologies for the treatment and management of industrial wastes and other environmental pollutants for the sake of environmental sustainability. Emerging bioremediation approaches such as nano-bioremediation technology, electro-bioremediation technology, microbial fuel cell technology, Modified Ludzack-Ettinger Process, Modified Activated Sludge Process, and phytotechnologies for the remediation of industrial wastes/pollutants are discussed in a comprehensive manner not found in other books. Furthermore, the book includes updated information as well as future directions for research in the field of bioremediation of industrial wastes. This book is useful to students, researchers, scientists and professionals in the field of microbiology and biotechnology, Bio (chemical) engineers, environmental researchers, eco-toxicology, environmental remediation and waste managers, who aspire to work on the biodegradation and bioremediation of industrial wastes/environmental pollutants for environmental sustainability. Includes the recovery of resources from wastewater Describes the importance of microorganisms in environmental bioremediation technologies Points out the reuse of treated wastewater through emerging technologies Pays attention to the occurrence of novel micro-pollutants Emphasizes the role of nanotechnology in pollutant bioremediation




Bioremediation


Book Description

Bioremediation: A Sustainable Approach to Preserving Earth’s Water discusses the latest research in green chemistry practices and principles that are involved in water remediation and the quality improvement of water. The presence of heavy metals, dyes, fluoride, dissolved solids and many other pollutants are responsible for water pollution and poor water quality. The removal of these pollutants in water resources is necessary, yet challenging. Water preservation is of great importance globally and researchers are making significant progress in ensuring this precious commodity is safe and potable. This volume illustrates how bioremediation in particular is a promising green technique globally. Features: Addresses bioremediation of all the major water pollutants Approaches the chemistry of water and the concept of water as a renewable resource from a green chemistry aspect Discusses environmental chemistry and the practice of industrial ecology Explains the global concern of adequate high quality water supplies, and how bioremediation can resolve this Explores sustainable development through green engineering




Bioremediation of Industrial Waste for Environmental Safety


Book Description

Achieving environmental sustainability with rapid industrialization is a major challenge of current scenario worldwide. As globally evident, industries are the key economic drivers, but are also the major polluters as untreated/partially treated effluents discharged from the industries is usually thrown into the aquatic resources and also dumped unattended. Industrial effluents are considered as the major sources of environmental pollution as these contains highly toxic and hazardous pollutants, which reaches far off areas due to the medium of dispersion and thus, create ecological nuisance and health hazards in living beings. Hence, there is an urgent to find ecofriendly solution to deal with industrial waste, and develop sustainable methods for treating/detoxifying wastewater before its release into the environment. Being a low cost and eco-friendly clean technology, bioremediation can be a sustainable alternative to conventional remediation technologies for treatment and management of industrial wastes to protect public health and environment. Therefore, this book (Volume I) covers the bioremediation of different industrial wastes viz. tannery wastewater, pulp and paper mill wastewater, distillery wastewater, acid mine tailing wastes, and many more; which are lacking in a comprehensive manner in previous literature at one place. A separate chapter dedicated to major industries and type of waste produced by them is also included. This book will appeal to students, researchers, scientists, industry persons and professionals in field of microbiology, biotechnology, environmental sciences, eco-toxicology, environmental remediation and waste management and other relevant areas, who aspire to work on the biodegradation and bioremediation of industrial wastes for environmental safety.




Advances in Biodegradation and Bioremediation of Industrial Waste


Book Description

Addresses a Global Challenge to Sustainable DevelopmentAdvances in Biodegradation and Bioremediation of Industrial Waste examines and compiles the latest information on the industrial waste biodegradation process and provides a comprehensive review. Dedicated to reducing pollutants generated by agriculturally contaminated soil, and plastic waste fr