Biosorbents


Book Description

This book focuses on the biologically derived adsorbent with numerous applications in wastewater treatment, metal recovery, biosensor development, and so forth. It initiates with the description of biological sources of biosorbents followed by applications of biosorbents, biosorption isotherms, assessment of biosorbents with various tools, pretreatment of biosorbents, and its mode of action. Some less explored areas like separation of radionuclides, biosorption of volatile organic compounds, and animal-based biosorbents are also explained. Features: Focuses on fundamentals, characteristics of flora and fauna-mediated biosorbents used extensively Describes entire aspects of tools and techniques related to assessment and monitoring of biosorbents Includes adsorption kinetics, adsorption isotherm, and mechanism of action of biosorbents Covers advancements in pretreatment methods to enhance the adsorption process of biosorbents Reviews recent applications which include heavy metal removal, dye remediation, and separation of radionuclides and nano-biosorbents This book is aimed at graduate students and researchers in bioprocess engineering, microbiology, and biotechnology.




Nano-biosorbents for Decontamination of Water, Air, and Soil Pollution


Book Description

Nano-biosorbents for Decontamination of Water, Air, and Soil Pollution explores the properties of nanobiosorbents and their applications in the removal of contaminants from the natural environment. The use of nanobiosorbents for environmental protection is a combinational approach that incorporates nanotechnology with naturally occurring biopolymers that form an amalgamation of nano-biopolymers used as sorbent materials in the removal of a variety of contaminants from wastewaters. This is an important reference source for materials scientists, bioscientists and environmental scientists who are looking to understand how nanobiosorbents are being used for a range of environmental applications. - Highlights the environmental applications of chitosan-based, cellulose-based and polymer-based nanoscale biosorbents - Explains the advantages of using different types of nanobiosorbents for soil, water and air purification applications - Assesses the challenges associated with manufacturing nanobiosorbents cheaply and on an industrial scale




Biosorbents for Metal Ions


Book Description

Metals can be dispersed, both naturally and by man's activities, into any of the Earth's elements - soil, water or air. Biological techniques for removing metal pollutants from soil, air or water are now attracting great interest, both because they are seen as more environmentally friendly than chemical treatments, and because, in some cases at lea




Biosorption for Wastewater Contaminants


Book Description

Pollution due to various anthropogenic activities continues to increase. In terms of water pollutants, organic and inorganic pollutants are the most problematic. Although several measures have been proposed and implemented to prevent or reduce contamination, their increased concentration in water bodies has created serious concerns. Over the years, the problem has been aggravated by industrialization, urbanization and the exploitation of natural resources. The direct discharge of wastewater contaminants and their geographical mobilization have caused an increase in concentration in ground, surface, fluvial and residual waters. Extensive information about detection and disposal methods is needed in order to develop technological solutions for a ­variety of environments, both urban and rural. This book provides up-to-date information on wastewater contaminants, aimed at researchers, engineers and technologists working in this field. Conventional physicochemical techniques used to remove contaminants from wastewater include ion exchange, precipitation, degradation, coagulation, coating, membrane processes and adsorption. However, these applications have technological and economic limitations, and involve the release of large amounts of chemical reagents and by-products that are themselves difficult to remove. Biosorption - the use of organically generated material as an adsorbent – is attracting new research and scholarship. Thermally-treated calcined biomaterials may be treated to remove heavy metals from wastewater. To ensure the elimination of these contaminants, existing solutions must be integrated with intelligent biosorption functions. Biosorption for Wastewater Contaminants will find an appreciative audience among academics and postgraduates working in the fields of environmental biotechnology, environmental engineering, wastewater treatment technology and environmental chemistry.




Biosorption of Heavy Metals


Book Description

This state-of-the-art volume represents the first comprehensively written book which focuses on the new field of biosorption. This fascinating work conveys essential fundamental information and outlines the perspectives of biosorption. It summarizes the metal-sorbing properties of nonliving bacterial, fungal, and algal biomass, plus highlights relevant metal-binding mechanisms. This volume also discusses the aspects of obtaining and processing microbial biomass and metal-chelating chemicals into industrially applicable biosorbent products. Microbiologists, chemists, and engineers with an interest in new technological and scientific horizons will find this reference indispensable.




Microbial Biosorption of Metals


Book Description

Heavy metals always pose serious ecological risks when released into the environment due to their elemental non-degradable nature, regardless of their chemical form. This calls for the development of efficient and low-cost effluent treatment and metal recuperation technologies for contaminated waste water, not only because regulatory limits need to be met but also because the waste itself can be a resource for certain precious metals. Biosorption is a general property of living and dead biomass to rapidly bind and abiotically concentrate inorganic or organic compounds from even very diluted aqueous solutions. As a specific term, biosorption is a method that utilizes materials of biological origin – biosorbents formulated from non-living biomass - for the removal of target substances from aqueous solutions. Recent research on biosorption provides a solid understanding of the mechanism underlying microbial biosorption of heavy metals and related elements. This book gathers review articles analyzing current views on the mechanism and (bio)chemistry of biosorption, the performance of bacterial, fungal and algal biomass, and the practical aspects of biosorbent preparation and engineering. It also reviews the physico-chemical evaluations of biosorbents and modelling of the process as well as the importance of biosorption during heavy metal removal using living cells. It is a reference work for scientists, environmental safety engineers and R&D specialists who wish to further promote biosorption research and use the accumulated knowledge to develop and build industrial applications of biosorption in heavy metal separation technologies.




Microbial Ecology of Wastewater Treatment Plants


Book Description

Microbial Ecology of Wastewater Treatment Plants presents different methods and techniques used in microbial ecology to study the interactions and evolution of microbial populations in WWTPs, particularly the new molecular tools developed in the last decades. These molecular biology-based methods (e.g. studies of DNA, RNA and proteins) provide a high resolution of information compared to traditional ways of studying microbial wastewater populations, such as microscopic examination and culture-based methods. In addition, this book addresses the ability of microorganisms to degrade environmental pollutants. - Describes application of different Omics tools in Wastewater treatment plants (WWTPs) - Demonstrates the role of microorganisms in WWTPs - Includes discussions on the microbial ecology of WWTPs - Covers the microbial diversity of activated sludge - Emphasizes cutting-edge molecular tools




Hazardous Materials and Wastewater


Book Description

Hazardous waste is a waste with properties that make it dangerous or potentially harmful to human health or the environment. Hazardous waste generally exhibits one or more of these characteristics: ignitability, corrosivity, reactivity or toxicity. The universe of hazardous wastes is large and diverse. Hazardous wastes can be liquids, solids, contained gases, or sludges. They can be the by-products of manufacturing processes or simply discarded commercial products, like cleaning fluids or pesticides. One major type is radioactive waste. This book brings together the latest research in this diverse field.




Industrial Wastewater Treatment


Book Description

This book provides an overview of recent advances in technologies for water treatment processes, such as green technology, nano-adsorbents, photocatalysts, advanced oxidation, membranes separation and sustainable technologies. Advances in membrane technology and fabrication process is presented in detail. Latest approaches like microbial treatment, electro chemical and solar energy-based treatment techniques were presented. Also, the use of sustainable and energy efficient approaches were discussed.· The book presents the negative impact of inorganic and organic pollutants on the natural environment and human health. It describes and discussing the advanced membrane technologies, novel green adsorbents, microbial treatment techniques, electro chemical and solar based removal techniques It also compares the most effective methods of removing toxic contaminants from water solutions with the use of sustainable and energy efficient approaches It also presents the life cycle assessment of emerging technologies in industrial wastewater treatment and desalination as well as presents the benchmarking of energy efficiency during treatment process




Biosorption Processes for Heavy Metal Removal


Book Description

Persistent and non-degradable, heavy metals stand as pollutants with the potential for severe ecological repercussions when released into the environment. Municipal and industrial wastewater face a high risk of contamination by these hazardous substances, posing a formidable challenge to water treatment technologies. The imperative is clear: effective and affordable methods for effluent treatment and metal recovery are essential for meeting regulatory standards and unlocking the latent value of valuable metals within the waste. However, new methods of accomplishing this challenge are necessary for increasing the effectiveness in both cost and application Biosorption Processes for Heavy Metal Removal comprehensively explores the imperative to remove heavy metals from waste streams. It provides an insightful overview of biosorbents and biosorption technology, focusing on their underlying biosorption features. The compilation within this book comprises of a series of review articles delving into the current understanding of biosorption mechanisms and biochemistry, the efficacy of bacterial, fungal, and algal biomass, and practical considerations for biosorbent preparation and engineering. The physicochemical evaluations of biosorbents, process optimization, and factors influencing biosorption efficiency are also covered. Furthermore, the book explores biosorption applications for removing nutrients, organic pollutants, and metals in wastewater treatment across diverse contexts. Geared towards administrators, policymakers, consultants, industry professionals, academicians, scientists, researchers, and graduate and post-graduate students in environmental sciences and related fields, this book serves as their comprehensive reference.