Biotechnology and Biological Sciences


Book Description

The application of Biotechnology dates back to the early era of civilization, when people first started to cultivate food crops. While the early applications are certainly still relevant, modern biotechnology is primarily associated with molecular biology, cloning and genetic engineering not only to increase the yield and to improve the quality of the crop but also its potential impact has touched upon virtually all domains of human interactions. Within the last 50 years, several key scientific discoveries revolutionized the biological sciences that facilitated the rapid growth of the biotechnology industry. 'Biotechnology and Biological Sciences III' contains the contributions presented at the 3rd International Conference on Biotechnology and Biological Sciences (BIOSPECTRUM 2019, Kolkata, India, 8-10 August 2019). The papers discuss various aspects of Biotechnology such as: microbial biotechnology, bioinformatics and drug designing, innovations in pharmaceutical industries and food processing industries, bioremediation, nano-biotechnology, and molecular-genetics, and will be of interest to academics and professionals involved or interested in these subject areas.




Biotechnology and Biological Sciences


Book Description

Biotechnology and Biological Sciences III includes contributions on: microbial biotechnology, bioinformatics and drug designing, innovations in pharmaceutical industries and food processing industries, bioremediation, nano-biotechnology, and molecular-genetics.




Fluorescence Applications in Biotechnology and Life Sciences


Book Description

A self-contained treatment of the latest fluorescence applications in biotechnology and the life sciences This book focuses specifically on the present applications of fluorescence in molecular and cellular dynamics, biological/medical imaging, proteomics, genomics, and flow cytometry. It raises awareness of the latest scientific approaches and technologies that may help resolve problems relevant for the industry and the community in areas such as public health, food safety, and environmental monitoring. Following an introductory chapter on the basics of fluorescence, the book covers: labeling of cells with fluorescent dyes; genetically encoded fluorescent proteins; nanoparticle fluorescence probes; quantitative analysis of fluorescent images; spectral imaging and unmixing; correlation of light with electron microscopy; fluorescence resonance energy transfer and applications; monitoring molecular dynamics in live cells using fluorescence photo-bleaching; time-resolved fluorescence in microscopy; fluorescence correlation spectroscopy; flow cytometry; fluorescence in diagnostic imaging; fluorescence in clinical diagnoses; immunochemical detection of analytes by using fluorescence; membrane organization; and probing the kinetics of ion pumps via voltage-sensitive fluorescent dyes. With its multidisciplinary approach and excellent balance of research and diagnostic topics, this book is an essential resource for postgraduate students and a broad range of scientists and researchers in biology, physics, chemistry, biotechnology, bioengineering, and medicine.




Biotechnology and Biology of Trichoderma


Book Description

Biotechnology and Biology of Trichoderma serves as a comprehensive reference on the chemistry and biochemistry of one of the most important microbial agents, Trichoderma, and its use in an increased number of industrial bioprocesses for the synthesis of many biochemicals such as pharmaceuticals and biofuels. This book provides individuals working in the field of Trichoderma, especially biochemical engineers, biochemists and biotechnologists, important information on how these valuable fungi can contribute to the production of a wide range of products of commercial and ecological interest. - Provides a detailed and comprehensive coverage of the chemistry, biochemistry and biotechnology of Trichoderma, fungi present in soil and plants - Includes most important current and potential applications of Trichoderma in bioengineering, bioprocess technology including bioenergy & biofuels, biopharmaceuticals, secondary metabolites and protein engineering - Includes the most recent research advancements made on Trichoderma applications in plant biotechnology and ecology and environment




Advances in Biological Science Research


Book Description

Advances in Biological Science Research: A Practical Approach provides discussions on diverse research topics and methods in the biological sciences in a single platform. This book provides the latest technologies, advanced methods, and untapped research areas involved in diverse fields of biological science research such as bioinformatics, proteomics, microbiology, medicinal chemistry, and marine science. Each chapter is written by renowned researchers in their respective fields of biosciences and includes future advancements in life science research. - Discusses various research topics and methods in the biological sciences in a single platform - Comprises the latest updates in advanced research techniques, protocols, and methods in biological sciences - Incorporates the fundamentals, advanced instruments, and applications of life science experiments - Offers troubleshooting for many common problems faced while performing research experiments







Machine Learning in Biotechnology and Life Sciences


Book Description

Explore all the tools and templates needed for data scientists to drive success in their biotechnology careers with this comprehensive guide Key FeaturesLearn the applications of machine learning in biotechnology and life science sectorsDiscover exciting real-world applications of deep learning and natural language processingUnderstand the general process of deploying models to cloud platforms such as AWS and GCPBook Description The booming fields of biotechnology and life sciences have seen drastic changes over the last few years. With competition growing in every corner, companies around the globe are looking to data-driven methods such as machine learning to optimize processes and reduce costs. This book helps lab scientists, engineers, and managers to develop a data scientist's mindset by taking a hands-on approach to learning about the applications of machine learning to increase productivity and efficiency in no time. You'll start with a crash course in Python, SQL, and data science to develop and tune sophisticated models from scratch to automate processes and make predictions in the biotechnology and life sciences domain. As you advance, the book covers a number of advanced techniques in machine learning, deep learning, and natural language processing using real-world data. By the end of this machine learning book, you'll be able to build and deploy your own machine learning models to automate processes and make predictions using AWS and GCP. What you will learnGet started with Python programming and Structured Query Language (SQL)Develop a machine learning predictive model from scratch using PythonFine-tune deep learning models to optimize their performance for various tasksFind out how to deploy, evaluate, and monitor a model in the cloudUnderstand how to apply advanced techniques to real-world dataDiscover how to use key deep learning methods such as LSTMs and transformersWho this book is for This book is for data scientists and scientific professionals looking to transcend to the biotechnology domain. Scientific professionals who are already established within the pharmaceutical and biotechnology sectors will find this book useful. A basic understanding of Python programming and beginner-level background in data science conjunction is needed to get the most out of this book.




Calculations for Molecular Biology and Biotechnology


Book Description

Calculations for Molecular Biology and Biotechnology: A Guide to Mathematics in the Laboratory, Second Edition, provides an introduction to the myriad of laboratory calculations used in molecular biology and biotechnology. The book begins by discussing the use of scientific notation and metric prefixes, which require the use of exponents and an understanding of significant digits. It explains the mathematics involved in making solutions; the characteristics of cell growth; the multiplicity of infection; and the quantification of nucleic acids. It includes chapters that deal with the mathematics involved in the use of radioisotopes in nucleic acid research; the synthesis of oligonucleotides; the polymerase chain reaction (PCR) method; and the development of recombinant DNA technology. Protein quantification and the assessment of protein activity are also discussed, along with the centrifugation method and applications of PCR in forensics and paternity testing. - Topics range from basic scientific notations to complex subjects like nucleic acid chemistry and recombinant DNA technology - Each chapter includes a brief explanation of the concept and covers necessary definitions, theory and rationale for each type of calculation - Recent applications of the procedures and computations in clinical, academic, industrial and basic research laboratories are cited throughout the text New to this Edition: - Updated and increased coverage of real time PCR and the mathematics used to measure gene expression - More sample problems in every chapter for readers to practice concepts




Biodefense in the Age of Synthetic Biology


Book Description

Scientific advances over the past several decades have accelerated the ability to engineer existing organisms and to potentially create novel ones not found in nature. Synthetic biology, which collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms, is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution. Although the contributions synthetic biology can make in these and other areas hold great promise, it is also possible to imagine malicious uses that could threaten U.S. citizens and military personnel. Making informed decisions about how to address such concerns requires a realistic assessment of the capabilities that could be misused. Biodefense in the Age of Synthetic Biology explores and envisions potential misuses of synthetic biology. This report develops a framework to guide an assessment of the security concerns related to advances in synthetic biology, assesses the levels of concern warranted for such advances, and identifies options that could help mitigate those concerns.




Cryopreservation Biotechnology in Biomedical and Biological Sciences


Book Description

Cryopreservation has many biotechnological applications in different fields. This has led to an increase in importance of cryobiology as a science that examines the effect of ultra-low temperatures on cells, tissues, organs and organisms and also the freezability of these structures, while maintaining their viability. Nowadays it is well known that this form of biotechnology can be used to solve a lot of problems such as human infertility, life threatening diseases, preservation of gametes and DNA and also biodiversity conservation. Cryopreservation Biotechnology in Biomedical and Biological Sciences describes principles and application of cryopreservation biotechnology in different research areas and includes seven chapters that have been written by experts in their research fields. The chapters included in this book are thought to improve the current understanding of the different areas of using cryopreservation biotechnology.