Click Chemistry for Biotechnology and Materials Science


Book Description

Mimicking natural biochemical processes, click chemistry is a modular approach to organic synthesis, joining together small chemical units quickly, efficiently and predictably. In contrast to complex traditional synthesis, click reactions offer high selectivity and yields, near-perfect reliability and exceptional tolerance towards a wide range of functional groups and reaction conditions. These ‘spring loaded’ reactions are achieved by using a high thermodynamic driving force, and are attracting tremendous attention throughout the chemical community. Originally introduced with the focus on drug discovery, the concept has been successfully applied to materials science, polymer chemistry and biotechnology. The first book to consider this topic, Click Chemistry for Biotechnology and Materials Science examines the fundamentals of click chemistry, its application to the precise design and synthesis of macromolecules, and its numerous applications in materials science and biotechnology. The book surveys the current research, discusses emerging trends and future applications, and provides an important nucleation point for research. Edited by one of the top 100 young innovators with the greatest potential to have an impact on technology in the 21st century according to Technology Review and with contributions from pioneers in the field, Click Chemistry for Biotechnology and Materials Science provides an ideal reference for anyone wanting to learn more about click reactions.




Silk Polymers


Book Description

Considering silk from spiders, midges, and aquatic insects as well as from silk worms, the 29 papers discuss recent research in the biology, genetics, synthesis, characterization, properties, modeling, processing, and applications. Addressed to biotechnologists, materials scientists, and other professionals. Reproduced from typescripts. Annotation copyright by Book News, Inc., Portland, OR




Opportunities in Biotechnology for Future Army Applications


Book Description

This report surveys opportunities for future Army applications in biotechnology, including sensors, electronics and computers, materials, logistics, and medical therapeutics, by matching commercial trends and developments with enduring Army requirements. Several biotechnology areas are identified as important for the Army to exploit, either by direct funding of research or by indirect influence of commercial sources, to achieve significant gains in combat effectiveness before 2025.




Biological Materials Science


Book Description

Takes a materials science approach, correlating structure-property relationships with function across a broad range of biological materials.




Biomaterials Science


Book Description

The revised edition of the renowned and bestselling title is the most comprehensive single text on all aspects of biomaterials science from principles to applications. Biomaterials Science, fourth edition, provides a balanced, insightful approach to both the learning of the science and technology of biomaterials and acts as the key reference for practitioners who are involved in the applications of materials in medicine.This new edition incorporates key updates to reflect the latest relevant research in the field, particularly in the applications section, which includes the latest in topics such as nanotechnology, robotic implantation, and biomaterials utilized in cancer research detection and therapy. Other additions include regenerative engineering, 3D printing, personalized medicine and organs on a chip. Translation from the lab to commercial products is emphasized with new content dedicated to medical device development, global issues related to translation, and issues of quality assurance and reimbursement. In response to customer feedback, the new edition also features consolidation of redundant material to ensure clarity and focus. Biomaterials Science, 4th edition is an important update to the best-selling text, vital to the biomaterials' community. - The most comprehensive coverage of principles and applications of all classes of biomaterials - Edited and contributed by the best-known figures in the biomaterials field today; fully endorsed and supported by the Society for Biomaterials - Fully revised and updated to address issues of translation, nanotechnology, additive manufacturing, organs on chip, precision medicine and much more. - Online chapter exercises available for most chapters




Materials Science of DNA


Book Description

The field of materials science and technology has undergone revolutionary advances due to the development of novel analytical tools, functional materials, and multidisciplinary approaches to engineering. Additionally, theoretical predictions combined with increasingly improved models and computational capabilities are making impressive contribution




Biomass Conversion


Book Description

The consumption of petroleum has surged during the 20th century, at least partially because of the rise of the automobile industry. Today, fossil fuels such as coal, oil, and natural gas provide more than three quarters of the world's energy. Unfortunately, the growing demand for fossil fuel resources comes at a time of diminishing reserves of these nonrenewable resources. The worldwide reserves of oil are sufficient to supply energy and chemicals for only about another 40 years, causing widening concerns about rising oil prices. The use of biomass to produce energy is only one form of renewable energy that can be utilized to reduce the impact of energy production and use on the global environment. Biomass can be converted into three main products such as energy, biofuels and fine chemicals using a number of different processes. Today, it is a great challenge for researchers to find new environmentally benign methodology for biomass conversion, which are industrially profitable as well. This book focuses on the conversion of biomass to biofuels, bioenergy and fine chemicals with the interface of biotechnology, microbiology, chemistry and materials science. An international scientific authorship summarizes the state-of-the-art of the current research and gives an outlook on future developments.




Bio-based Materials and Biotechnologies for Eco-efficient Construction


Book Description

Bio-based Materials and Biotechnologies for Eco-efficient Construction fills a gap in the published literature, discussing bio-based materials and biotechnologies that are crucial for a more sustainable construction industry. With comprehensive coverage and contributions from leading experts in the field, the book includes sections on Bio-based materials and biotechnologies for infrastructure applications, Bio-based materials and biotechnologies for building energy efficiency, and other applications, such as using biotechnology to reduce indoor air pollution, for water treatment, and in soil decontamination. The book will be an essential reference resource for academic researchers, civil engineers, contractors working in construction works, postgraduate students and other professionals.




Silicon Carbide Biotechnology


Book Description

Silicon Carbide (SiC) is a wide-band-gap semiconductor biocompatible material that has the potential to advance advanced biomedical applications. SiC devices offer higher power densities and lower energy losses, enabling lighter, more compact and higher efficiency products for biocompatible and long-term in vivo applications ranging from heart stent coatings and bone implant scaffolds to neurological implants and sensors. The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time. For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo. This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions. - Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists - Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials - Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices




Algae Based Polymers, Blends, and Composites


Book Description

Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Material Sciences offers considerable detail on the origin of algae, extraction of useful metabolites and major compounds from algal bio-mass, and the production and future prospects of sustainable polymers derived from algae, blends of algae, and algae based composites. Characterization methods and processing techniques for algae-based polymers and composites are discussed in detail, enabling researchers to apply the latest techniques to their own work. The conversion of bio-mass into high value chemicals, energy, and materials has ample financial and ecological importance, particularly in the era of declining petroleum reserves and global warming. Algae are an important source of biomass since they flourish rapidly and can be cultivated almost everywhere. At present the majority of naturally produced algal biomass is an unused resource and normally is left to decompose. Similarly, the use of this enormous underexploited biomass is mainly limited to food consumption and as bio-fertilizer. However, there is an opportunity here for materials scientists to explore its potential as a feedstock for the production of sustainable materials. - Provides detailed information on the extraction of useful compounds from algal biomass - Highlights the development of a range of polymers, blends, and composites - Includes coverage of characterization and processing techniques, enabling research scientists and engineers to apply the information to their own research and development - Discusses potential applications and future prospects of algae-based biopolymers, giving the latest insight into the future of these sustainable materials