Black Holes in the Era of Gravitational-Wave Astronomy


Book Description

Black Holes in the Era of Gravitational-Wave Astronomy provides a multidisciplinary, up-to-date view of the physics of black holes, along with an exhaustive overview of crucial open questions and recent advancements in the astrophysics of black holes in the wake of incredible advancements made in the last decade. It includes discussions on improvements in theoretical modeling and observational perspectives for black holes of all sizes, along with associated challenges. The book's structure and themes will enable an entwined understanding of black hole physics at all scales, thus avoiding the compartmentalized view that is typical of more specialized manuscripts and reviews.This book is a complete reference for scientists interested in a multidirectional approach to the study of black holes. It provides substantial discussions about the interplay of different types of black holes and gives professionals a heterogeneous and comprehensive overview of the astrophysics of black holes of all masses. - Focuses on recent advances and future perspectives surrounding black holes, providing researchers with a clear view of cutting-edge research - Offers readers a multidisciplinary, fresh view on black holes, discussing and reviewing the most recent advancements in theoretical, numerical and observational techniques put in place to detect black holes - Provides a bridge among different black hole areas, fostering new collaborations among professionals working in different, but intrinsically interconnected fields




The Detection of Gravitational Waves


Book Description

This book introduces the concepts of gravitational waves within the context of general relativity. The sources of gravitational radiation for which there is direct observational evidence and those of a more speculative nature are described. He then gives a general introduction to the methods of detection. In the subsequent chapters he has drawn together the leading scientists in the field to give a comprehensive practical and theoretical account of the physics and technology of gravitational wave detection.




Einstein Was Right


Book Description

An authoritative interdisciplinary account of the historic discovery of gravitational waves In 1915, Albert Einstein predicted the existence of gravitational waves—ripples in the fabric of spacetime caused by the movement of large masses—as part of the theory of general relativity. A century later, researchers with the Laser Interferometer Gravitational-Wave Observatory (LIGO) confirmed Einstein's prediction, detecting gravitational waves generated by the collision of two black holes. Shedding new light on the hundred-year history of this momentous achievement, Einstein Was Right brings together essays by two of the physicists who won the Nobel Prize for their instrumental roles in the discovery, along with contributions by leading scholars who offer unparalleled insights into one of the most significant scientific breakthroughs of our time. This illuminating book features an introduction by Tilman Sauer and invaluable firsthand perspectives on the history and significance of the LIGO consortium by physicists Barry Barish and Kip Thorne. Theoretical physicist Alessandra Buonanno discusses the new possibilities opened by gravitational wave astronomy, and sociologist of science Harry Collins and historians of science Diana Kormos Buchwald, Daniel Kennefick, and Jürgen Renn provide further insights into the history of relativity and LIGO. The book closes with a reflection by philosopher Don Howard on the significance of Einstein's theory for the philosophy of science. Edited by Jed Buchwald, Einstein Was Right is a compelling and thought-provoking account of one of the most thrilling scientific discoveries of the modern age.




Black Hole Blues and Other Songs from Outer Space


Book Description

The authoritative story of the headline-making discovery of gravitational waves—by an eminent theoretical astrophysicist and award-winning writer. From the author of How the Universe Got Its Spots and A Madman Dreams of Turing Machines, the epic story of the scientific campaign to record the soundtrack of our universe. Black holes are dark. That is their essence. When black holes collide, they will do so unilluminated. Yet the black hole collision is an event more powerful than any since the origin of the universe. The profusion of energy will emanate as waves in the shape of spacetime: gravitational waves. No telescope will ever record the event; instead, the only evidence would be the sound of spacetime ringing. In 1916, Einstein predicted the existence of gravitational waves, his top priority after he proposed his theory of curved spacetime. One century later, we are recording the first sounds from space, the soundtrack to accompany astronomy’s silent movie. In Black Hole Blues and Other Songs from Outer Space, Janna Levin recounts the fascinating story of the obsessions, the aspirations, and the trials of the scientists who embarked on an arduous, fifty-year endeavor to capture these elusive waves. An experimental ambition that began as an amusing thought experiment, a mad idea, became the object of fixation for the original architects—Rai Weiss, Kip Thorne, and Ron Drever. Striving to make the ambition a reality, the original three gradually accumulated an international team of hundreds. As this book was written, two massive instruments of remarkably delicate sensitivity were brought to advanced capability. As the book draws to a close, five decades after the experimental ambition began, the team races to intercept a wisp of a sound with two colossal machines, hoping to succeed in time for the centenary of Einstein’s most radical idea. Janna Levin’s absorbing account of the surprises, disappointments, achievements, and risks in this unfolding story offers a portrait of modern science that is unlike anything we’ve seen before.




Gravitational Waves in Physics and Astrophysics


Book Description

The direct detection of gravitational waves in 2015 has initiated a new era of gravitational wave astronomy, which has already paid remarkable dividends in our understanding of astrophysics and gravitational physics. Aimed at advanced undergraduates and graduate students, this book introduces gravitational waves and its many applications to cosmology, nuclear physics, astrophysics and theoretical physics.




Ripples in Spacetime


Book Description

A spacetime appetizer -- Relatively speaking -- Einstein on trial -- Wave talk and bar fights -- The lives of stars -- Clockwork precision -- Laser quest -- The path to perfection -- Creation stories -- Cold case -- Gotcha -- Black magic -- Nanoscience -- Follow-up questions -- Space invaders -- Surf's up for Einstein wave astronomy




Numerical Relativity


Book Description

Aimed at students and researchers entering the field, this pedagogical introduction to numerical relativity will also interest scientists seeking a broad survey of its challenges and achievements. Assuming only a basic knowledge of classical general relativity, the book develops the mathematical formalism from first principles, and then highlights some of the pioneering simulations involving black holes and neutron stars, gravitational collapse and gravitational waves. The book contains 300 exercises to help readers master new material as it is presented. Numerous illustrations, many in color, assist in visualizing new geometric concepts and highlighting the results of computer simulations. Summary boxes encapsulate some of the most important results for quick reference. Applications covered include calculations of coalescing binary black holes and binary neutron stars, rotating stars, colliding star clusters, gravitational and magnetorotational collapse, critical phenomena, the generation of gravitational waves, and other topics of current physical and astrophysical significance.




Handbook of Gravitational Wave Astronomy


Book Description

This handbook provides an updated comprehensive description of gravitational wave astronomy. In the first part, it reviews gravitational wave experiments, from ground and space based laser interferometers to pulsar timing arrays and indirect detection from the cosmic microwave background. In the second part, it discusses a number of astrophysical and cosmological gravitational wave sources, including black holes, neutron stars, possible more exotic objects, and sources in the early Universe. The third part of the book reviews the methods to calculate gravitational waveforms. The fourth and last part of the book covers techniques employed in gravitational wave astronomy data analysis. This book represents both a valuable resource for graduate students and an important reference for researchers in gravitational wave astronomy.




Modern General Relativity


Book Description

Einstein's general theory of relativity is widely considered to be one of the most elegant and successful scientific theories ever developed, and it is increasingly being taught in a simplified form at advanced undergraduate level within both physics and mathematics departments. Due to the increasing interest in gravitational physics, in both the academic and the public sphere, driven largely by widely-publicised developments such as the recent observations of gravitational waves, general relativity is also one of the most popular scientific topics pursued through self-study. Modern General Relativity introduces the reader to the general theory of relativity using an example-based approach, before describing some of its most important applications in cosmology and astrophysics, such as gamma-ray bursts, neutron stars, black holes, and gravitational waves. With hundreds of worked examples, explanatory boxes, and end-of-chapter problems, this textbook provides a solid foundation for understanding one of the towering achievements of twentieth-century physics.




General Relativity and its Applications


Book Description

• Provides a self-contained and consistent treatment of the subject that does not require advanced previous knowledge of the field. • Explores the subject with a new focus on gravitational waves and astrophysical relativity, unlike current introductory textbooks. • Fully up-to-date, containing the latest developments and discoveries in the field.