Bone Substitute Biomaterials


Book Description

Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic polymer composites, and marine organisms.




Bone Tissue Engineering


Book Description

Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t




Biomaterials in Orthopedics


Book Description

Written by respected experts in the field, Biomaterials in Orthopedics discusses bioabsorbable biomaterials for bone repair, nondegradable materials in orthopaedics and delivery systems. Topics in this text include biocompatibility and the biomaterial/tissue interface; self-reinforced bioabsorbable devices and guided regeneration; bone substitutes,




Smart Biomaterials


Book Description

This book provides comprehensive coverage of smart biomaterials and their potential applications, a field that is developing at a very rapid pace. Because smart biomaterials are an emerging class of biomaterials that respond to small changes in external stimuli with large discontinuous changes in their physical properties, they have been designed to act as an “on–off” switch for, among others, bio separation, immunoanalysis, drug delivery technologies, gene therapy, diagnostics, bio sensors and artificial muscles. After an introduction to the topic and the history of smart biomaterials, the author gives the reader an in-depth look at the properties, mechanics, and characterization of smart biomaterials including hydrogels, particles, assemblies, surfaces, fibers and conjugates. Information on the wide range of applications for these materials follows, including drug delivery, tissue engineering, diagnostics, biosensors, bio separation and actuators. In addition, recent advances in shape memory biomaterials as active components of medical devices are also presented.




Bone Regeneration and Repair


Book Description

This collection of articles by leading orthopedic and craniofacial surgeons and researchers comprehensively reviews the biology of bone formation and repair, the basic science of autologous bone graft, allograft, bone substitutes, and growth factors, and explore their clinical application in patients with bone repair problems.




Advances in Calcium Phosphate Biomaterials


Book Description

Advances in Calcium Phosphate Biomaterials presents a comprehensive, state-of-the-art review of the latest advances in developing calcium phosphate biomaterials and their applications in medicine. It covers the fundamental structures, synthesis methods, characterization methods, and the physical and chemical properties of calcium phosphate biomaterials, as well as the synthesis and properties of calcium phosphate-based biomaterials in regenerative medicine and their clinical applications. The book brings together these new concepts, mechanisms and methods in contributions by both young and “veteran” academics, clinicians, and researchers to forward the knowledge and expertise on calcium phosphate and related materials. Accordingly, the book not only covers the fundamentals but also open new avenues for meeting future challenges in research and clinical applications. Besim Ben-Nissan is a Professor of Chemistry and Forensic Science at the University of Technology, Sydney, Australia




Engineering Magnetic, Dielectric and Microwave Properties of Ceramics and Alloys


Book Description

New research on the magnetic, dielectric and microwave properties of promising materials for domestic, industrial, military and medical applications are presented, with focus on biomaterials, ferrites, Ni-Fe alloys, capacitors, multiferroics, microwave absorbers and perovskite materials. Special emphasis is placed on bioceramics for orthopedic applications; classification of biomaterials; bioactive glass systems; preparation, properties and applications of PbFe12O19 hexaferrites; Ni-Fe alloys for shielding electronic devices from external magnetostatic fields; the role of multiferroics in spintronics field; design of microwave absorbers and absorption characteristics of ceramics.




Biomaterials


Book Description

These contribution books collect reviews and original articles from eminent experts working in the interdisciplinary arena of biomaterial development and use. From their direct and recent experience, the readers can achieve a wide vision on the new and ongoing potentialities of different synthetic and engineered biomaterials. Contributions were selected not based on a direct market or clinical interest, but based on results coming from very fundamental studies. This too will allow to gain a more general view of what and how the various biomaterials can do and work for, along with the methodologies necessary to design, develop and characterize them, without the restrictions necessarily imposed by industrial or profit concerns. The chapters have been arranged to give readers an organized view of this research area. In particular, this book contains 25 chapters related to recent researches on new and known materials, with a particular attention to their physical, mechanical and chemical characterization, along with biocompatibility and hystopathological studies. Readers will be guided inside the range of disciplines and design methodologies used to develope biomaterials possessing the physical and biological properties needed for specific medical and clinical applications.




Octacalcium Phosphate Biomaterials


Book Description

Octacalcium Phosphate Biomaterials: Past, Present and Future is a comprehensive study of octacalcium phosphate (OCP), a next generation biomaterial for bone regeneration. By focusing both on fundamental research and the use of OCP as a scaffold material, this book explores its potential to deliver improved clinical results. Early chapters in the book discuss OCP's effects on bone cell activity, cellular interactions and their role in bone formation, repair and replacement. Later chapters cover topics such as drug delivery, synthesis methodologies and future analysis techniques. This will be an invaluable and unique resource for researchers, clinicians, students and industrialists in the area of orthopedics and dentistry. OCP is known to be a pre-cursor to hydroxyapatite in the human biomineralization process that forms bone and tooth enamel. Research studies that have emerged in recent years suggest OCP's tremendous potential as a bioactive material. - Contains comprehensive, up-to-date information on the basic science, including physical, chemical and biological properties - Presents the clinical potential of octacalcium phosphate biomaterials - Provides a reference point for new research and increased activity in the area of next generation smarter biomaterials for hard tissue repair and regeneration




Collagen, from Tissue Culture to Biomaterials, Tissue Engineering, and Beyond


Book Description

As collagen is the main structural component of body tissues, there has been much effort expended, both in the past and today, to use it in cell culture applications. Indeed, its importance is further stressed by the wide use of collagen biomaterials in tissue repair and regeneration, including the treatment of burns, chronic wounds or bone repair. This book represents a journey through recent scientific history, and describes the massive implications of the research carried out by Bornstein, Ehrmann and Gey on collagen preparations in the 1950s for cell culture and more recently, tissue engineering and personalised medicine.