Boron and Refractory Borides


Book Description

V. I. MATKOVICH During the meeting of the International Symposium on Boron held in October, 1972 in Tbilisi, U.S.S.R., the idea was proposed to assemble a review of boron and refractory borides by the specialists present. The advantages of such a work were immediately apparent. Such diverse applications of borides as in protective armor, nuclear reactors, coat ings, reinforcement, etc. can hardly all be presented in sufficient detail by a single author. On the other hand it was also recognized that with so much specialization, some areas of interest may not be covered. Within the last decade or two a number of areas have been developed in which the use of refractory borides is growing and improvements are being actively explored. Thus, a number of borides have considerable potential as reinforcing material for plastics or light metals, though only boron fibers have been firmly established up to the present. Ap plication of flakes and films for two-dimensional reinforcement appears attractive, although the high cost of materials and development repre sents a considerable barrier. A number of borides have been used to manufacture lightweight protec tive armor. In this area relatively fast changes seem to be taking place as improvements in performance and weight are made. Boron carbide has found considerable use in this application and new developments exploit the light weight of beryllium borides.




Materials Science of Carbides, Nitrides and Borides


Book Description

A survey of current research on a wide range of carbide, nitride and boride materials, covering the general issues relevant to the development and characterisation of a variety of advanced materials. Topics include structure and electronic properties, modeling, processing, high-temperature chemistry, oxidation and corrosion, mechanical behaviour, manufacturing and applications. The volume complements more specialised books on specific materials as well as more general texts on ceramics or hard materials, presenting a survey of materials research as a key to technological development. After decades of research, the materials are being used in electronics, wear resistant, refractory and other applications, but numerous new applications are possible. Roughly equal numbers of papers cover theoretical and experimental research in the general field of materials science of refractory materials. Audience: Researchers and graduate students in materials science and engineering.







Radiation Synthesis of Materials and Compounds


Book Description

Researchers and engineers working in nuclear laboratories, nuclear electric plants, and elsewhere in the radiochemical industries need a comprehensive handbook describing all possible radiation-chemistry interactions between irradiation and materials, the preparation of materials under distinct radiation types, the possibility of damage of material




Electric Refractory Materials


Book Description

An exploration of electric refractory materials, this book covers developments of blue light-emitting diodes using GaN-based nitrides for laser and high-temperature and -frequency devices. "Electric Refractory Materials" introduces growth and evaluation standards of films and bulk crystals, with consideration of band structure, surface electronic structure, and lattice vibrations. It also covers heat capacity and thermal conductivity, irradiation properties, and selective surfaces. Focusing on diamond material, the book examines its synthesis and characterization as well as its electrical, optical, and conductive properties. The book also discusses the use of silicon carbide, boron compounds, and other material used in electronic and light-emitting devices.




Contemporary Boron Chemistry


Book Description

The continued and evolving significance of boron chemistry to the wider chemical community is demonstrated by the international and interdisciplinary nature of the research reported in this book. Contemporary Boron Chemistry encompasses inorganic and organic compounds as well as polymers, solid-state materials, medicinal aspects and theoretical studies. Covering many areas of chemistry with boron at its centre, topics include applications to polyolefin catalysis, medicine, materials and polymers; boron cluster chemistry, including carboranes and metal-containing clusters; organic and inorganic chemistry of species containing only 1 or 2 boron atoms; and theoretical studies of boron-containing compounds. New materials with novel optical and electronic properties are also discussed. Comprehensive and up to date, graduates and researchers in a wide range of fields, particularly those in organometallic and organic chemistry and materials science, will welcome this book.




The Physics and Chemistry of Carbides, Nitrides and Borides


Book Description

Carbides, nitrides and borides are families of related refractory materials. Traditionally they have been employed in applications associated with engineering ceramics where either high temperature strength or stability is of primary importance. In recent years there has been a growing awareness of the interesting electrical, thermal and optical properties exhibited by these materials, and the fact that many can be prepared as monolithic ceramics, single crystals and thin films. In practical terms carbides, nitrides and borides offer the prospect of a new generation of semiconductor materials, for example, which can function at very high temperatures in severe environmental conditions. However, as yet, we have only a limited understanding of the detailed physics and chemistry of the materials and how the preparation techniques influence the properties. Under the auspices of the NATO Science Committee an Advanced Research Workshop (ARW) was held on the Physics and Chemistry of Carbides, Nitrides and Borides (University of Manchester, 18-22 September, 1989) in order to assess progress to date and identify the most promising themes and materials for future research. An international group of 38 scientists considered developments in 5 main areas: The preparation of powders, monolithic ceramics, single crystals and thin films; Phase transformations, microstructure, defect structure and mass transport; Materials stability; Theoretical studies; Electrical, thermal and optical properties of bulk materials and thin films.




Ceramics Science and Technology, Volume 2


Book Description

Although ceramics have been known to mankind literally for millennia, research has never ceased. Apart from the classic uses as a bulk material in pottery, construction, and decoration, the latter half of the twentieth century saw an explosive growth of application fields, such as electrical and thermal insulators, wear-resistant bearings, surface coatings, lightweight armour, or aerospace materials. In addition to plain, hard solids, modern ceramics come in many new guises such as fabrics, ultrathin films, microstructures and hybrid composites. Built on the solid foundations laid down by the 20-volume series Materials Science and Technology, Ceramics Science and Technology picks out this exciting material class and illuminates it from all sides. Materials scientists, engineers, chemists, biochemists, physicists and medical researchers alike will find this work a treasure trove for a wide range of ceramics knowledge from theory and fundamentals to practical approaches and problem solutions.