Bottom-Interacting Ocean Acoustics


Book Description

vi These categories seem to represent the basic breakdown by field of present-day research in this area. Though each paper has been classified into one of these categories (for conference organization purpose), many papers overlapped two or three areas. It is also interesting to note that not only are scientific results being communicated, but the latest techniques and the state-of-the-art tools of the trade (existing and in development) are also being presented. The forty-six papers presented at this conference represent the work of seventy scientists working at universities, government laboratories, and industrial laboratories in seven different countries . We would like to thank the contributors for their efforts and especially for their promptness in providing the editors with their final manuscripts. William A. Kuperman Finn B. Jensen La Spezia, Italy July 1980 CONTENTS GEOACOUSTIC PROPERTIES OF MARINE SEDIMENTS Attenuation of Sound in Marine Sediments . • 1 J. M. Hovem Directivity and Radiation Impedance of a Transducer 15 Embedded in a Lossy Medium . •• •••••• G. H. Ziehm Elastic Properties Related to Depth of Burial, Strontium Content and Age, and Diagenetic Stage in Pelagic Carbonate Sediments . . • • . • • • . 41 M. H. Manghnani, S. O. Schianger, and P. D. Milholland Application of Geophysical Methods 'and Equipment to Explore the Sea Bottom . •• •••. • 53 H. F. Weichart The Acoustic Response of Some Gas-Charged Sediments in the Northern Adriatic Sea • • • • . • • • • 73 A.







Acoustic Interactions With Submerged Elastic Structures - Part Iii: Acoustic Propagation And Scattering, Wavelets And Time Frequency Analysis


Book Description

The interaction of acoustic fields with submerged elastic structures, both by propagation and scattering, is being investigated at various institutions and laboratories world-wide with ever-increasing sophistication of experiments and analysis. This book offers a collection of contributions from these research centers that represent the present state-of-the-art in the study of acoustic elastic interaction, being on the cutting edge of these investigations. This includes the description of acoustic scattering from submerged elastic objects and shells by the Resonance Scattering Theory of Flax, Dragonette and Überall, and the interaction of these phenomena in terms of interface waves. It also includes the use of this theory for the purpose of inverse scattering, i.e. the determination of the scattered objects properties from the received acoustic backscattered signals. The problem of acoustically excited waves in inhomogeneous and anisotropic materials, and of inhomogeneous propagating waves is considered. Vibrations and resonances of elastic shells, including shells with various kinds of internal attachments, are analyzed. Acoustic scattering experiments are described in the time domain, and on the basis of the Wigner-Ville distribution. Acoustic propagation in the water column over elastic boundaries is studied experimentally both in laboratory tanks, and in the field, and is analyzed theoretically. Ultrasonic nondestructive testing, including such aspects like probe modelling, scattering by various types of cracks, receiving probes and calibration by a side-drilled hole is also studied in details.A comprehensive picture of these complex phenomena and other aspects is presented in the book by researchers that are experts in each of these domains, giving up-to-date accounts of the field in all these aspects.




Acoustic Interactions With Submerged Elastic Structures - Part Ii: Propagation, Ocean Acoustics And Scattering


Book Description

The interaction of acoustic fields with submerged elastic structures, both by propagation and scattering, is being investigated at various institutions and laboratories world-wide with ever-increasing sophistication of experiments and analysis. This book offers a collection of contributions from these research centers that represent the present state-of-the-art in the study of acoustic elastic interaction, being on the cutting edge of these investigations. This includes the description of acoustic scattering from submerged elastic objects and shells by the Resonance Scattering Theory of Flax, Dragonette and Überall, and the interaction of these phenomena in terms of interface waves. It also includes the use of this theory for the purpose of inverse scattering, i.e. the determination of the scattered objects properties from the received acoustic backscattered signals. The problem of acoustically excited waves in inhomogeneous and anisotropic materials, and of inhomogeneous propagating waves is considered. Vibrations and resonances of elastic shells, including shells with various kinds of internal attachments, are analyzed. Acoustic scattering experiments are described in the time domain, and on the basis of the Wigner-Ville distribution. Acoustic propagation in the water column over elastic boundaries is studied experimentally both in laboratory tanks, and in the field, and is analyzed theoretically. Ultrasonic nondestructive testing, including such aspects like probe modelling, scattering by various types of cracks, receiving probes and calibration by a side-drilled hole is also studied in details.A comprehensive picture of these complex phenomena and other aspects is presented in the book by researchers that are experts in each of these domains, giving up-to-date accounts of the field in all these aspects.




Naval Research Reviews


Book Description




Full Field Inversion Methods in Ocean and Seismo-Acoustics


Book Description

Recent advances in the power of inversion methods, the accuracy of acoustic field prediction codes, and the speed of digital computers have made the full field inversion of ocean and seismic parameters on a large scale a practical possibility. These methods exploit amplitude and phase information detected on hydrophone/geophone arrays, thereby extending traditional inversion schemes based on time of flight measurements. Full field inversion methods provide environmental information by minimising the mismatch between measured and predicted acoustic fields through a global search of possible environmental parameters. Full Field Inversion Methods in Ocean and Seismo-Acoustics is the formal record of a conference held in Italy in June 1994, sponsored by NATO SACLANT Undersea Research Centre. It includes papers by NATO specialists and others. Topics covered include: · speed and accuracy of acoustic field prediction codes · signal processing strategies · global inversion algorithms · search spaces of environmental parameters · environmental stochastic limitations · special purpose computer architectures · measurement geometries · source and receiving sensor technologies.




Springer Handbook of Acoustics


Book Description

This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.




Underwater Acoustic Modelling and Simulation, Third Edition


Book Description

Underwater Acoustic Modeling and Simulation examines the translation of our physical understanding of sound in the sea into mathematical models that can simulate acoustic propagation, noise and reverberation in the ocean. These models are used in a variety of research and operational applications to predict and diagnose the performance of complex sonar systems operating in the undersea environment. Previous editions of the book have provided invaluable guidance to sonar technologists, acoustical oceanographers and applied mathematicians in the selection and application of underwater acoustic models. Now that simulation is fast becoming an accurate, efficient and economical alternative to field-testing and at-sea training, this new edition will also provide useful guidance to systems engineers and operations analysts interested in simulating sonar performance. Guidelines for selecting and using available propagation, noise and reverberation models are highlighted. Specific examples of each type of model are discussed to illustrate model formulations, assumptions and algorithm efficiency. Instructive case studies demonstrate applications in sonar simulation.




Underwater Acoustic Modelling and Simulation


Book Description

Underwater Acoustic Modeling and Simulation examines the translation of our physical understanding of sound in the sea into mathematical models that can simulate acoustic propagation, noise and reverberation in the ocean. These models are used in a variety of research and operational applications to predict and diagnose the performance of complex s




Ocean Seismo-Acoustics


Book Description

Seafloor investigation has long been a feature of not only seismology but also of acoustics. Indeed it was acoustics that produced depth sounders, giving us the first capability of producing both global and local maps of the seafloor. Subsequently, better instrumentation and techniques led to a clearer, more quantitative picture of the seabed itself, which stimulated new hypotheses such as seafloor spreading through the availability of more reliable data on sediment thickness over ocean basins and other bottom features. Geologists and geophysicists have used both acoustic and seismic methods to study the seabed by considering the propagation of signals arising from both natural seismic events and man-made impulsive sources. Although significant advances have been made in instrumentation, such as long towed geophysical arrays, ai r guns and ocean bot tom seismometers, the pic ture of the seafloor is still far from complete. Underwater acoustics concerns itself today with the phenomena of propagation and noise at frequencies and ranges that require an understanding of acoustic interaction at both of its boundaries, the sea surface and seafloor, over depths ranging from tens to thousands of meters. Much of the earlier higher frequency (>1 kHz) work included the characterization of the seafloor in regimes of reflection coefficients which were empirically derived from surveys. The results of these studies met with only limited success, confined as they were to those areas where survey data existed and lacking a physical understanding of the processes of reflection and scattering.