Advances in Boundary Element Techniques


Book Description

The editors have published a select group of full length papers on boundary element analysis (BEA) photographed from camera ready manuscripts. The articles have been prepared by some of the most distinguished and prolific individuals in this field. More than half of these articles have been submitted by authors that participated in an International Forum on Boundary Element Methods, in Melbourne Australia, in the Summer of 1991. However, this volume is not a conference proceedings, as these authors have expanded their accounts to chapter length, and/or have tailored their expositions more toward the style employed in archival journal publications. The authors that did not participate in the International Forum have also adhered to the above mentioned philosophy. This work contains a definitive representation of the significant capabilities and applications currently available or under investigation that fall under the general category of advanced boundary element analysis. With treatments of mechanical, thermal, fluid, and electromagnetic phenomena, this book should thus be of value to graduate students, practitioners, and researchers in engineering, mathematics, and the physical sciences wishing to obtain a broader perspective or remain current in these important areas of computational simulation.



















Vibration Theory and Applications with Finite Elements and Active Vibration Control


Book Description

Based on many years of research and teaching, this book brings together all the important topics in linear vibration theory, including failure models, kinematics and modeling, unstable vibrating systems, rotordynamics, model reduction methods, and finite element methods utilizing truss, beam, membrane and solid elements. It also explores in detail active vibration control, instability and modal analysis. The book provides the modeling skills and knowledge required for modern engineering practice, plus the tools needed to identify, formulate and solve engineering problems effectively.




Mathematical Reviews


Book Description







The Scaled Boundary Finite Element Method


Book Description

An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.