Boundary Integral and Singularity Methods for Linearized Viscous Flow


Book Description

In addition to theory, this study focuses on practical application and computer implementation in a coherent introduction to boundary integrals, boundary element and singularity methods for steady and unsteady flow at zero Reynolds numbers.







Boundary Element Analysis of Viscous Flow


Book Description

In recent years, the performance of digital computers has been improved by the rapid development of electronics at remarkable speed. In addition, substantial research has been carried out in developing numerical analysis techniques. Nowadays, a variety of problems in the engineering and scientific fields can be solved by using not only super computers but also personal computers. After the first book titled "Boundary Element" was published by Brebbia in 1978, the boundary element method (BEM) has been recognized as a powerful numerical technique which has some advantages over the finite difference method (FDM) and finite element method (FEM). A great amount of research has been carried out on the applications of BEM to various problems. The numerical analysis of fluid mechanics and heat transfer problems plays a key role in analysing some phenomena and it has become recognized as a new research field called "Computational Fluid Dynamics". In partic ular, the analysis of viscous flow including thermal convection phenomena is one of the most important problems in engineering fields. The FDM and FEM have been generally .applied to solve these problems because of non singularities of governing equations.







The Boundary Element Method, Volume 1


Book Description

The boundary element method (BEM) is a modern numerical techniquewhich has enjoyed increasing popularity over the last two decades,and is now an established alternative to traditional computationalmethods of engineering analysis. The main advantage of the BEM isits unique ability to provide a complete solution in terms ofboundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with acomprehensive and up-to-date account of the boundary element methodand its application to solving engineering problems. Each volume isa self-contained book including a substantial amount of materialnot previously covered by other text books on the subject. Volume 1covers applications to heat transfer, acoustics, electrochemistryand fluid mechanics problems, while volume 2 concentrates on solidsand structures, describing applications to elasticity, plasticity,elastodynamics, fracture mechanics and contact analysis. The earlychapters are designed as a teaching text for final yearundergraduate courses. Both volumes reflect the experience of theauthors over a period of more than twenty years of boundary element research. This volume, Applications in Thermo-Fluids and Acoustics, provides acomprehensive presentation of the BEM from fundamentals to advancedengineering applications and encompasses: Steady and transient heat transfer Potential and viscous fluid flows Frequency and time-domain acoustics Corrosion and other electrochemical problems. A unique feature of this book is an in-depth presentation of BEMformulations in all the above fields, including detaileddiscussions of the basic theory, numerical algorithms and practicalengineering applications of the method. Written by an internationally recognised authority in the field,this is essential reading for postgraduates, researchers andpractitioners in civil, mechanical and chemical engineering andapplied mathematics.




Viscous Flow


Book Description

Many of the topics in inviscid fluid dynamics are not only vitally important mechanisms in everyday life but they are also readily observable without any need for instrumentation. It is therefore stimulating when the mathematics that emerges when these phenomena are modelled is novel and suggestive of alternative methodologies. This book provides senior undergraduates who are already familiar with inviscid fluid dynamics with some of the basic facts about the modelling and analysis of viscous flows. It clearly presents the salient physical ideas and the mathematical ramifications with exercises designed to be an integral part of the text. By showing the basic theoretical framework which has developed as a result of the study of viscous flows, the book should be ideal reading for students of applied mathematics who should then be able to delve further into the subject and be well placed to exploit mathematical ideas throughout the whole of applied science.




Free Boundaries in Viscous Flows


Book Description

It is increasingly the case that models of natural phenomena and materials processing systems involve viscous flows with free surfaces. These free boundaries are interfaces of the fluid with either second immiscible fluids or else deformable solid boundaries. The deformation can be due to mechanical displacement or as is the case here, due to phase transformation; the solid can melt or freeze. This volume highlights a broad range of subjects on interfacial phenomena. There is an overview of the mathematical description of viscous free-surface flows, a description of the current understanding of mathematical issues that arise in these models and a discussion of high-order-accuracy boundary-integral methods for the solution of viscous free surface flows. There is the mathematical analysis of particular flows: long-wave instabilities in viscous-film flows, analysis of long-wave instabilities leading to Marangoni convection, and de§ scriptions of the interaction of convection with morphological stability during directional solidification. This book is geared toward anyone with an interest in free-boundary problems, from mathematical analysts to material scientists; it will be useful to applied mathematicians, physicists, and engineers alike.




The Isogeometric Boundary Element Method


Book Description

This book discusses the introduction of isogeometric technology to the boundary element method (BEM) in order to establish an improved link between simulation and computer aided design (CAD) that does not require mesh generation. In the isogeometric BEM, non-uniform rational B-splines replace the Lagrange polynomials used in conventional BEM. This may seem a trivial exercise, but if implemented rigorously, it has profound implications for the programming, resulting in software that is extremely user friendly and efficient. The BEM is ideally suited for linking with CAD, as both rely on the definition of objects by boundary representation. The book shows how the isogeometric philosophy can be implemented and how its benefits can be maximised with a minimum of user effort. Using several examples, ranging from potential problems to elasticity, it demonstrates that the isogeometric approach results in a drastic reduction in the number of unknowns and an increase in the quality of the results. In some cases even exact solutions without refinement are possible. The book also presents a number of practical applications, demonstrating that the development is not only of academic interest. It then elegantly addresses heterogeneous and non-linear problems using isogeometric concepts, and tests them on several examples, including a severely non-linear problem in viscous flow. The book makes a significant contribution towards a seamless integration of CAD and simulation, which eliminates the need for tedious mesh generation and provides high-quality results with minimum user intervention and computing.




Viscous Incompressible Flow for Low Reynolds Numbers


Book Description

This book presents the fundamental mathematical theory of, and reviews state-of-the-art advances in, low Reynolds number viscous incompressible flow. The authors devote much of the text to the development of boundary integral methods for slow viscous flow pointing out new and important results.




Boundary Integral Methods


Book Description