Bounded Dynamic Stochastic Systems


Book Description

Over the past decades, although stochastic system control has been studied intensively within the field of control engineering, all the modelling and control strategies developed so far have concentrated on the performance of one or two output properties of the system. such as minimum variance control and mean value control. The general assumption used in the formulation of modelling and control strategies is that the distribution of the random signals involved is Gaussian. In this book, a set of new approaches for the control of the output probability density function of stochastic dynamic systems (those subjected to any bounded random inputs), has been developed. In this context, the purpose of control system design becomes the selection of a control signal that makes the shape of the system outputs p.d.f. as close as possible to a given distribution. The book contains material on the subjects of: - Control of single-input single-output and multiple-input multiple-output stochastic systems; - Stable adaptive control of stochastic distributions; - Model reference adaptive control; - Control of nonlinear dynamic stochastic systems; - Condition monitoring of bounded stochastic distributions; - Control algorithm design; - Singular stochastic systems. A new representation of dynamic stochastic systems is produced by using B-spline functions to descripe the output p.d.f. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.




Stochastic Distribution Control System Design


Book Description

A recent development in SDC-related problems is the establishment of intelligent SDC models and the intensive use of LMI-based convex optimization methods. Within this theoretical framework, control parameter determination can be designed and stability and robustness of closed-loop systems can be analyzed. This book describes the new framework of SDC system design and provides a comprehensive description of the modelling of controller design tools and their real-time implementation. It starts with a review of current research on SDC and moves on to some basic techniques for modelling and controller design of SDC systems. This is followed by a description of controller design for fixed-control-structure SDC systems, PDF control for general input- and output-represented systems, filtering designs, and fault detection and diagnosis (FDD) for SDC systems. Many new LMI techniques being developed for SDC systems are shown to have independent theoretical significance for robust control and FDD problems.




Bounded Noises in Physics, Biology, and Engineering


Book Description

​​Since the parameters in dynamical systems of biological interest are inherently positive and bounded, bounded noises are a natural way to model the realistic stochastic fluctuations of a biological system that are caused by its interaction with the external world. Bounded Noises in Physics, Biology, and Engineering is the first contributed volume devoted to the modeling of bounded noises in theoretical and applied statistical mechanics, quantitative biology, and mathematical physics. It gives an overview of the current state-of-the-art and is intended to stimulate further research. The volume is organized in four parts. The first part presents the main kinds of bounded noises and their applications in theoretical physics. The theory of bounded stochastic processes is intimately linked to its applications to mathematical and statistical physics, and it would be difficult and unnatural to separate the theory from its physical applications. The second is devoted to framing bounded noises in the theory of random dynamical systems and random bifurcations, while the third is devoted to applications of bounded stochastic processes in biology, one of the major areas of potential applications of this subject. The final part concerns the application of bounded stochastic processes in mechanical and structural engineering, the area where the renewed interest for non-Gaussian bounded noises started. Pure mathematicians working on stochastic calculus will find here a rich source of problems that are challenging from the point of view of contemporary nonlinear analysis. Bounded Noises in Physics, Biology, and Engineering is intended for scientists working on stochastic processes with an interest in both fundamental issues and applications. It will appeal to a broad range of applied mathematicians, mathematical biologists, physicists, engineers, and researchers in other fields interested in complexity theory. It is accessible to anyone with a working knowledge of stochastic modeling, from advanced undergraduates to senior researchers.




Stochastic Analysis, Stochastic Systems, and Applications to Finance


Book Description

Pt. I. Stochastic analysis and systems. 1. Multidimensional Wick-Ito formula for Gaussian processes / D. Nualart and S. Ortiz-Latorre. 2. Fractional white noise multiplication / A.H. Tsoi. 3. Invariance principle of regime-switching diffusions / C. Zhu and G. Yin -- pt. II. Finance and stochastics. 4. Real options and competition / A. Bensoussan, J.D. Diltz and S.R. Hoe. 5. Finding expectations of monotone functions of binary random variables by simulation, with applications to reliability, finance, and round robin tournaments / M. Brown, E.A. Pekoz and S.M. Ross. 6. Filtering with counting process observations and other factors : applications to bond price tick data / X. Hu, D.R. Kuipers and Y. Zeng. 7. Jump bond markets some steps towards general models in applications to hedging and utility problems / M. Kohlmann and D. Xiong. 8. Recombining tree for regime-switching model : algorithm and weak convergence / R.H. Liu. 9. Optimal reinsurance under a jump diffusion model / S. Luo. 10. Applications of counting processes and martingales in survival analysis / J. Sun. 11. Stochastic algorithms and numerics for mean-reverting asset trading / Q. Zhang, C. Zhuang and G. Yin




Random Dynamical Systems


Book Description

The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.




Advances in Dynamics, Instrumentation and Control


Book Description

This volume is a compilation of 50 articles representing the scientific and technical advances in various aspects of system dynamics, instrumentation, measurement techniques, and control. It serves as an important resource in the field. The topics include state-of-the-art contributions in the fields of dynamics and control of nonlinear, hybrid, stochastic, time-delayed and piecewise affine systems; nonlinear control theory; control of chaotic systems; adaptive, model predictive and real-time controls, with applications involving vehicular systems, fault diagnostics, and flexible and cellular manufacturing systems, vibration suppression, biomedical, mobile robots, etc.The proceedings have been selected for coverage in: OCo Index to Scientific & Technical Proceedings- (ISTP- / ISI Proceedings)OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)OCo CC Proceedings OCo Engineering & Physical Sciences"




Diagnostics and Prognostics of Engineering Systems: Methods and Techniques


Book Description

Industrial Prognostics predicts an industrial system’s lifespan using probability measurements to determine the way a machine operates. Prognostics are essential in determining being able to predict and stop failures before they occur. Therefore the development of dependable prognostic procedures for engineering systems is important to increase the system’s performance and reliability. Diagnostics and Prognostics of Engineering Systems: Methods and Techniques provides widespread coverage and discussions on the methods and techniques of diagnosis and prognosis systems. Including practical examples to display the method’s effectiveness in real-world applications as well as the latest trends and research, this reference source aims to introduce fundamental theory and practice for system diagnosis and prognosis.




An Introduction to Stochastic Modeling


Book Description

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.




Stochastic Hybrid Systems


Book Description

Because they incorporate both time- and event-driven dynamics, stochastic hybrid systems (SHS) have become ubiquitous in a variety of fields, from mathematical finance to biological processes to communication networks to engineering. Comprehensively integrating numerous cutting-edge studies, Stochastic Hybrid Systems presents a captivating treatment of some of the most ambitious types of dynamic systems. Cohesively edited by leading experts in the field, the book introduces the theoretical basics, computational methods, and applications of SHS. It first discusses the underlying principles behind SHS and the main design limitations of SHS. Building on these fundamentals, the authoritative contributors present methods for computer calculations that apply SHS analysis and synthesis techniques in practice. The book concludes with examples of systems encountered in a wide range of application areas, including molecular biology, communication networks, and air traffic management. It also explains how to resolve practical problems associated with these systems. Stochastic Hybrid Systems achieves an ideal balance between a theoretical treatment of SHS and practical considerations. The book skillfully explores the interaction of physical processes with computerized equipment in an uncertain environment, enabling a better understanding of sophisticated as well as everyday devices and processes.




Identification and Control of Sheet and Film Processes


Book Description

Sheet and film processes include coating, papermaking, metal rolling, and polymer film extrusion. Products produced by these processes include paper, bumper stickers, plastic bags, windshield safety glass, and sheet metal. The total capitalization of industries that rely on these processes is well over $ 500 billion worldwide. These processes are notorious for being difficult to control. The goal of this book is to present the theoretical background and practical techniques for the identification and control of sheet and film processes. It is explained why many existing industrial control systems perform poorly for sheet and film processes. Identification and control algorithms are described and illustrated which provide consistent and reliable product quality. These algorithms include an experimental design technique that ensures that informative data are collected during input-output experimentation, model identification techniques that produce a process model and an estimate of its accuracy, and control techniques that take into account actuator constraints as well as robustness to model uncertainties. The algorithms covered in this book are truly the state of the art. Variations on some of the algorithms have been implemented on industrial sheet and film processes. Other algorithms are in various stages of implementation. All of the algorithms have been applied to realistic simulation models constructed from industrial plant data; many of these studies are included in this book.