Boundedness Results for Operators with Singular Kernels on Distribution Spaces


Book Description

In this monograph, the author generalizes the T1 theorem of G. David and J.-L. Journé to the context of Triebel-Lizorkin spaces, which include most of the function and distribution spaces of importance in classical analysis. M. Frazier and B. Jawerth have shown that these spaces admit decompositions in terms of certain fundamental building blocks, known as "smooth atoms'' and "smooth molecules''. In the author's words, "to prove that an operator is bounded on a Triebel-Lizorkin space, it is enough to show that it maps every family of smooth atoms into a family of smooth molecules''. The same basic techniques can be used to study operators between two different Triebel-Lizorkin spaces. Results are obtained for a wide variety of operators acting on the Triebel-Lizorkin spaces, including generalized Calderón-Zygmund operators and their derivatives; potential operators; fractional integral operators; and the Hörmander classes of pseudodifferential operators. When these general results are restricted to specific spaces, many classical boundedness results are recovered.










Singular Integrals


Book Description




On Necessary and Sufficient Conditions for $L^p$-Estimates of Riesz Transforms Associated to Elliptic Operators on $\mathbb {R}^n$ and Related Estimates


Book Description

This memoir focuses on $Lp$ estimates for objects associated to elliptic operators in divergence form: its semigroup, the gradient of the semigroup, functional calculus, square functions and Riesz transforms. The author introduces four critical numbers associated to the semigroup and its gradient that completely rule the ranges of exponents for the $Lp$ estimates. It appears that the case $p2$ which is new. The author thus recovers in a unified and coherent way many $Lp$ estimates and gives further applications. The key tools from harmonic analysis are two criteria for $Lp$ boundedness, one for $p2$ but in ranges different from the usual intervals $(1,2)$ and $(2,\infty)$.







Mathematical Reviews


Book Description




Reviews in Functional Analysis, 1980-86


Book Description

These four volumes contain the almost 12,000 reviews appearing in Mathematical Reviews under primary or secondary subject classification 46, Functional Analysis, between 1980 and 1986.




Harmonic Analysis on Spaces of Homogeneous Type


Book Description

This book could have been entitled “Analysis and Geometry.” The authors are addressing the following issue: Is it possible to perform some harmonic analysis on a set? Harmonic analysis on groups has a long tradition. Here we are given a metric set X with a (positive) Borel measure ? and we would like to construct some algorithms which in the classical setting rely on the Fourier transformation. Needless to say, the Fourier transformation does not exist on an arbitrary metric set. This endeavor is not a revolution. It is a continuation of a line of research whichwasinitiated,acenturyago,withtwofundamentalpapersthatIwould like to discuss brie?y. The ?rst paper is the doctoral dissertation of Alfred Haar, which was submitted at to University of Gottingen ̈ in July 1907. At that time it was known that the Fourier series expansion of a continuous function may diverge at a given point. Haar wanted to know if this phenomenon happens for every 2 orthonormal basis of L [0,1]. He answered this question by constructing an orthonormal basis (today known as the Haar basis) with the property that the expansion (in this basis) of any continuous function uniformly converges to that function.




Eigenfunctions of the Laplacian on a Riemannian Manifold


Book Description

Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.