Brassinosteroids in Plant Developmental Biology and Stress Tolerance


Book Description

Brassinosteroids in Plant Developmental Biology and Stress Tolerance provides insights into understanding the mechanisms of Brassinosteroid-regulated plant developmental biology and stress tolerance covering various biochemical, physiological, genetic and molecular studies. As unprecedented climate change poses a serious threat to global food security by intensifying environmental stresses, studies reveal that Brassinosteroids (BRs) could not only protect plants from stresses to ensure food security, but could also reduce toxic compounds in edible plant parts for assuring food safety. Therefore, utilization of BRs in modern agriculture will be of great significance in the context of global climate change. This book also highlights key information for developing eco-friendly growth regulators and understanding the importance of brassinosteroids in safe food production. - Presents the multifaceted roles of brassinosteroids as phytohormones in plant growth, development and response to biotic and/or abiotic stresses - Unveils the physiological and molecular mechanisms controlling plant stress response to biotic and abiotic stress - Discusses developmental processes relating to environmental adaptations that are mediated by brassinosteroids - Brings together recent works of experts studying brassinosteroid crosstalk with other signals, including hormones, sugars, redox and light signals




Protective Chemical Agents in the Amelioration of Plant Abiotic Stress


Book Description

A guide to the chemical agents that protect plants from various environmental stressors Protective Chemical Agents in the Amelioration of Plant Abiotic Stress offers a guide to the diverse chemical agents that have the potential to mitigate different forms of abiotic stresses in plants. Edited by two experts on the topic, the book explores the role of novel chemicals and shows how using such unique chemical agents can tackle the oxidative damages caused by environmental stresses. Exogenous application of different chemical agents or chemical priming of seeds presents opportunities for crop stress management. The use of chemical compounds as protective agents has been found to improve plant tolerance significantly in various crop and non-crop species against a range of different individually applied abiotic stresses by regulating the endogenous levels of the protective agents within plants. This important book: Explores the efficacy of various chemical agents to eliminate abiotic stress Offers a groundbreaking look at the topic and reviews the most recent advances in the field Includes information from noted authorities on the subject Promises to benefit agriculture under stress conditions at the ground level Written for researchers, academicians, and scientists, Protective Chemical Agents in the Amelioration of Plant Abiotic Stress details the wide range of protective chemical agents, their applications, and their intricate biochemical and molecular mechanism of action within the plant systems during adverse situations.




Brassinosteroids: Plant Growth and Development


Book Description

The entire range of the developmental process in plants is regulated by a shift in the hormonal concentration, tissue sensitivity and their interaction with the factors operating around the plants. Phytohormones play a crucial role in regulating the direction of plant in a coordinated fashion in association with metabolism that provides energy and the building blocks to generate the form that we recognize as a plant. Out of the recognized hormones, attention has largely been focused on Auxins, Gibberellins, Cytokinins, Abscisic acid, Ethylene and more recently on Brassinosteroids. In this book we are providing the information about a brassinosteroids that again confirm its status as phytohormones because it has significant impact on various aspects of the plant life and its ubiquitous distribution throughout the plant kingdom. Brassinosteroids are generating a significant impact on plant growth and development, photosynthesis, transpiration, ion uptake and transport, induces specific changes in leaf anatomy and chloroplast structure. This book is not an encyclopedia of reviews but includes a selected collection of newly written, integrated, illustrated reviews describing our knowledge of brassinosteroids. The aim of this book is to tell all about brassinosteroids, by the present time. The various chapters incorporate both theoretical and practical aspects and may serve as baseline information for future researches through which significant development is possible. It is intended that this book will be useful to the students, teachers and researchers, both in universities and research institutes, especially in relation to biological and agricultural sciences.




Heat Stress Tolerance in Plants


Book Description

Demystifies the genetic, biochemical, physiological, and molecular mechanisms underlying heat stress tolerance in plants Heat stress—when high temperatures cause irreversible damage to plant function or development—severely impairs the growth and yield of agriculturally important crops. As the global population mounts and temperatures continue to rise, it is crucial to understand the biochemical, physiological, and molecular mechanisms of thermotolerance to develop ‘climate-smart’ crops. Heat Stress Tolerance in Plants provides a holistic, cross-disciplinary survey of the latest science in this important field. Presenting contributions from an international team of plant scientists and researchers, this text examines heat stress, its impact on crop plants, and various mechanisms to modulate tolerance levels. Topics include recent advances in molecular genetic approaches to increasing heat tolerance, the potential role of biochemical and molecular markers in screening germplasm for thermotolerance, and the use of next-generation sequencing to unravel the novel genes associated with defense and metabolite pathways. This insightful book: Places contemporary research on heat stress in plants within the context of global climate change and population growth Includes diverse analyses from physiological, biochemical, molecular, and genetic perspectives Explores various approaches to increasing heat tolerance in crops of high commercial value, such as cotton Discusses the applications of plant genomics in the development of thermotolerant ‘designer crops’ An important contribution to the field, Heat Stress Tolerance in Plants is an invaluable resource for scientists, academics, students, and researchers working in fields of pulse crop biochemistry, physiology, genetics, breeding, and biotechnology.




Biochemistry and Molecular Biology of Plant Hormones


Book Description

This book provides up-to-date coverage at an advanced level of a range of topics in the biochemistry and molecular biology of plant hormones, with particular emphasis on biosynthesis, metabolism and mechanisms of action. Each contribution is written by acknowledged experts in the field, providing definitive coverage of the field. No other modern book covers this subject matter at such an advanced level so comprehensively. It will be invaluable to university libraries and scientists in the plant biotechnology industries.




Hormone Metabolism and Signaling in Plants


Book Description

Plant Hormones: Biosynthesis and Mechanisms of Action is based on research funded by the Chinese government's National Natural Science Foundation of China (NSFC). This book brings a fresh understanding of hormone biology, particularly molecular mechanisms driving plant hormone actions. With growing understanding of hormone biology comes new outlooks on how mankind values and utilizes the built-in potential of plants for improvement of crops in an environmentally friendly and sustainable manner. This book is a comprehensive description of all major plant hormones: how they are synthesized and catabolized; how they are perceived by plant cells; how they trigger signal transduction; how they regulate gene expression; how they regulate plant growth, development and defense responses; and how we measure plant hormones. This is an exciting time for researchers interested in plant hormones. Plants rely on a diverse set of small molecule hormones to regulate every aspect of their biological processes including development, growth, and adaptation. Since the discovery of the first plant hormone auxin, hormones have always been the frontiers of plant biology. Although the physiological functions of most plant hormones have been studied for decades, the last 15 to 20 years have seen a dramatic progress in our understanding of the molecular mechanisms of hormone actions. The publication of the whole genome sequences of the model systems of Arabidopsis and rice, together with the advent of multidisciplinary approaches has opened the door to successful experimentation on plant hormone actions. - Offers a comprehensive description of all major plant hormones including the recently discovered strigolactones and several peptide hormones - Contains a chapter describing how plant hormones regulate stem cells - Offers a fresh understanding of hormone biology, particularly molecular mechanisms driving plant hormone actions - Discusses the built-in potential of plants for improvement of crops in an environmentally friendly and sustainable manner




Plant Stress Biology


Book Description

This is the first book to present a comprehensive and advanced discussion on the latest insights into plant stress biology. Starting with general aspects of biotic as well as abiotic stresses, this handbook and ready reference moves on to focus on topics of stress hormones, technical approaches such as proteomics, transcriptomics and genomics, and their integration into systemic modeling. This book is a valuable resource for researchers as well as professionals not just in plant sciences but also in cell and molecular biology as well as biotechnology.




Plant Growth and Development


Book Description

This book provides current information on synthesis of plant hormones, how their concentrations are regulated, and how they modulate various plant processes. It details how plants sense and tolerate such factors as drought, salinity, and cold temperature, factors that limit plant productivity on earth. It also explains how plants sense two other environmental signals, light and gravity, and modify their developmental patterns in response to those signals. This book takes the reader from basic concepts to the most up-to-date thinking on these topics. * Provides clear synthesis and review of hormonal and environmental regulation of plant growth and development * Contains more than 600 illustrations supplementary information on techniques and/or related topics of interest * Single-authored text provides uniformity of presentation and integration of the subject matter * References listed alphabetically in each section




Plant Growth Regulators


Book Description

Agriculture faces many challenges to fulfil the growing demand for sustainable food production and ensure high-quality nutrition for a rapidly growing population. To guarantee adequate food production, it is necessary to increase the yield per area of arable land. A method for achieving this goal has been the application of growth regulators to modulate plant growth. Plant growth regulators (PGRs) are substances in specific formulations which, when applied to plants or seeds, have the capacity to promote, inhibit, or modify physiological traits, development and/or stress responses. They maintain proper balance between source and sink for enhancing crop yield. PGRs are used to maximize productivity and quality, improve consistency in production, and overcome genetic and abiotic limitations to plant productivity. Suitable PGRs include hormones such as cytokinins and auxins, and hormone-like compounds such as mepiquat chloride and paclobutrazol. The use of PGRs in mainstream agriculture has steadily increased within the last 20 years as their benefits have become better understood by growers. Unfortunately, the growth of the PGR market may be constrained by a lack of innovation at a time when an increase in demand for new products will require steady innovation and discovery of novel, cost-competitive, specific, and effective PGRs. A plant bio-stimulant is any substance or microorganism applied to plants with the aim to enhance nutrition efficiency, abiotic stress tolerance and/or crop quality traits, regardless of its nutrients content. Apart from traditional PGRs, which are mostly plant hormones, there are a number of substances/molecules such as nitric oxide, methyl jasmonate, brassinosteroids, seaweed extracts, strigolactones, plant growth promoting rhizobacteria etc. which act as PGRs. These novel PGRs or bio-stimulants have been reported to play important roles in stress responses and adaptation. They can protect plants against various stresses, including water deficit, chilling and high temperatures, salinity and flooding. This book includes chapters ranging from sensing and signalling in plants to translational research. In addition, the cross-talk operative in plants in response to varied signals of biotic and abiotic nature is also presented. Ultimately the objective of this book is to present the current scenario and the future plan of action for the management of stresses through traditional as well as novel PGRs. We believe that this book will initiate and introduce readers to state-of-the-art developments and trends in this field of study.




Plant Hormones under Challenging Environmental Factors


Book Description

This book presents recent advances in understanding the physiological and molecular mechanisms of different abiotic stresses such as high or low temperature, salinity, drought, flooding, soil acidity, heavy metals, light stress and ozone stress, and discusses the multifaceted role of phytohormones in stress adaptation and the underlying mechanisms. Aimed at students and researchers in the field of plant science, it offers a comprehensive overview of the versatile roles and interactions of different phytohormones in response to a specific stress factor and examines the possible physiological and molecular mechanisms that have been the subject of recent research.