Bright Solitary Waves and Non-equilibrium Dynamics in Atomic Bose-Einstein Condensates


Book Description

In this thesis we investigate the static properties and non-equilibrium dynamics of bright solitary waves in atomic Bose-Einstein condensates in the zero-temperature limit, and we investigate the non-equilibrium dynamics of a driven atomic Bose-Einstein condensate at finite temperature. Bright solitary waves in atomic Bose-Einstein condensates are non-dispersive and soliton-like matter-waves which could be used in future atom-interferometry experiments. Using the mean-field, Gross-Pitaevskii description, we propose an experimental scheme to generate pairs of bright solitary waves with controlled velocity and relative phase; this scheme could form an important part of a future atom interferometer, and we demonstrate that it can also be used to test the validity of the mean-field model of bright solitary waves. We also develop a method to quantitatively assess how soliton-like static, three-dimensional bright solitary waves are; this assessment is particularly relevant for the design of future experiments. In reality, the non-zero temperatures and highly non-equilibrium dynamics occurring in a bright solitary wave interferometer are likely to necessitate a theoretical description which explicitly accounts for the non-condensate fraction. We show that a second-order, number-conserving description offers a minimal self-consistent treatment of the relevant condensate -- non-condensate interactions at low temperatures and for moderate non-condensate fractions. We develop a method to obtain a fully-dynamical numerical solution to the integro-differential equations of motion of this description, and solve these equations for a driven, quasi-one-dimensional test system. We show that rapid non-condensate growth predicted by lower-order descriptions, and associated with linear dynamical instabilities, can be damped by the self-consistent treatment of interactions included in the second-order description.




Emergent Nonlinear Phenomena in Bose-Einstein Condensates


Book Description

This book, written by experts in the fields of atomic physics and nonlinear science, covers the important developments in a special aspect of Bose-Einstein condensation, namely nonlinear phenomena in condensates. Topics covered include bright, dark, gap and multidimensional solitons; vortices; vortex lattices; optical lattices; multicomponent condensates; mathematical methods/rigorous results; and the beyond-the-mean-field approach.







Quantum Gases: Finite Temperature And Non-equilibrium Dynamics


Book Description

The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems.This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of editorial notes.Both graduate students and established researchers wishing to understand the state of the art will greatly benefit from this comprehensive and up-to-date review of non-equilibrium and finite temperature techniques in the exciting and expanding field of quantum gases and liquids./a




Universal Themes of Bose-Einstein Condensation


Book Description

Covering general theoretical concepts and the research to date, this book demonstrates that Bose-Einstein condensation is a truly universal phenomenon.




Dark-bright Solitons and Vortices in Bose-Einstein Condensates


Book Description

This dissertation focuses on the properties of nonlinear waves in Bose-Einstein condensates (BECs). The fundamental model here is the nonlinear Schrodinger equation, the so-called Gross-Pitaevskii (GP) equation, which is a mean-field description of BECs. The systematic analysis begins by considering the dark-bright (DB)-soliton interactions and multiple-dark-bright-soliton complexes in atomic two-component BECs. The interaction between two DB solitons in a homogeneous condensate and at the presence of the trap are both considered. Our analytical approximation relies in a Hamiltonian perturbation theory, which leads to an equation of motion of the centers of DB-soliton interacting pairs. Employing this equation, we demonstrate the existence of robust DB-soliton molecules, in the form of stationary two- and three-DB-soliton states. Also the equilibrium distance of the constituent solitons and the corresponding oscillation frequencies are found semianalytically, where the latter corresponds to the characteristic anomalous modes' eigenfrequencies that we numerically computed via a so called Bogoliubov-de Gennes (BdG) linearization analysis. Those studies are discussed in Chapter 2. Then, we extend our studies to the dynamics of dark-bright (DB) solitons in binary BECs at finite temperature using a system of two-coupled dissipative GPs. We show that the effect of the bright soliton is to partially stabilize dark solitons against temperature-induced dissipation, thus providing longer lifetimes in Chapter 3. Furthermore, the dark-dark (DD) solitons as a prototypical coherent structure that emerges in two-component BECs are studied and are connected to dark-bright (DB) solitons via SO(2) rotation. We obtained their beating frequency and their frequency of oscillation inside a parabolic trap. They are identified as exact periodic orbits in the Manakov limit of equal inter- and intra- species nonlinearity strengths with and without the trap and we showcase the persistence of such states upon weak deviations from this limit. Also we investigated in detail the effect of the deviation from the Manakov case by considering different from unity scattering length ratios in Chapter 4. Next, we revisited Hamiltonian eigenvalue problems that typically arise in the linearization around a stationary state of a Hamiltonian nonlinear PDE. Also we presented a overview of the known facts for the eigenvalue counts of the corresponding unstable spectra. In particular, we focused on a straightforward plan to implement finite-dimensional techniques for locating this spectrum via the singular points of the meromorphic Krein Matrix and illustrated the value of the approach by considering realistic problems for recently observed experimentally multivortex and multisoliton solutions in atomic Bose-Einstein condensates in Chapter 5. In the two dimensional scenario, we also examine the stability and dynamics of vortices under the effect of dissipation used as a simplified model for the inclusion of the effect of finite temperatures in atomic BECs, which enables an analytical prediction that can be compared directly to numerical results in Chapter 6. In all the above studies, our analytical prediction from the equation of motion are in good agreement with the numerical results from the BdG analysis.




Probing Non-Equilibrium Dynamics in Two-Dimensional Quantum Gases


Book Description

This thesis explores the physics of non-equilibrium quantum dynamics in homogeneous two-dimensional (2D) quantum gases. Ultracold quantum gases driven out of equilibrium have been prominent platforms for studying quantum many-body physics. However, probing non-equilibrium dynamics in conventionally trapped, inhomogeneous atomic quantum gases has been a challenging task because coexisting mass transport and spreading of quantum correlations often complicate experimental analyses. In this work, the author solves this technical hurdle by producing ultracold cesium atoms in a quasi-2D optical box potential. The exquisite optical trap allows one to remove density inhomogeneity in a degenerate quantum gas and control its dimensionality. The author also details the development of a high-resolution, in situ imaging technique to monitor the evolution of collective excitations and quantum transport down to atomic shot-noise, and at the length scale of elementary collective excitations. Meanwhile, tunable Feshbach resonances in ultracold cesium atoms permit precise and dynamical control of interactions with high temporal and even spatial resolutions. By employing these state-of-the-art techniques, the author performed interaction quenches to control the generation and evolution of quasiparticles in quantum gases, presenting the first direct measurement of quantum entanglement between interaction quench generated quasiparticle pairs in an atomic superfluid. Quenching to attractive interactions, this work shows stimulated emission of quasiparticles, leading to amplified density waves and fragmentation, forming 2D matter-wave Townes solitons that were previously considered impossible to form in equilibrium due to their instability. This thesis unveils a set of scale-invariant and universal quench dynamics and provides unprecedented tools to explore quantum entanglement transport in a homogenous quantum gas.




Bose-einstein Condensation - From Atomic Physics To Quantum Fluids, Procs Of The 13th Physics Summer Sch


Book Description

Bose-Einstein condensation of dilute gases is an exciting new field of interdisciplinary physics. The eight chapters in this volume introduce its theoretical and experimental foundations. The authors are lucid expositors who have also made outstanding contributions to the field. They include theorists Tony Leggett, Allan Griffin and Keith Burnett, and Nobel-Prize-winning experimentalist Bill Phillips. In addition to the introductory material, there are articles treating topics at the forefront of research, such as experimental quantum phase engineering of condensates, the “superchemistry” of interacting atomic and molecular condensates, and atom laser theory.




Bose-Einstein Condensation of Excitons and Biexcitons


Book Description

Bose-Einstein condensation of excitons is a unique effect in which the electronic states of a solid can self-organize to acquire quantum phase coherence. The phenomenon is closely linked to Bose-Einstein condensation in other systems such as liquid helium and laser-cooled atomic gases. This is the first book to provide a comprehensive survey of this field, covering theoretical aspects as well as recent experimental work. After setting out the relevant basic physics of excitons, the authors discuss exciton-phonon interactions as well as the behaviour of biexcitons. They cover exciton phase transitions and give particular attention to nonlinear optical effects including the optical Stark effect and chaos in excitonic systems. The thermodynamics of equilibrium, quasi-equilibrium, and nonequilibrium systems are examined in detail. The authors interweave theoretical and experimental results throughout the book, and it will be of great interest to graduate students and researchers in semiconductor and superconductor physics, quantum optics, and atomic physics.




Bose–Einstein Condensation in Dilute Gases


Book Description

Since an atomic Bose-Einstein condensate, predicted by Einstein in 1925, was first produced in the laboratory in 1995, the study of ultracold Bose and Fermi gases has become one of the most active areas in contemporary physics. This book explains phenomena in ultracold gases from basic principles, without assuming a detailed knowledge of atomic, condensed matter, and nuclear physics. This new edition has been revised and updated, and includes new chapters on optical lattices, low dimensions, and strongly-interacting Fermi systems. This book provides a unified introduction to the physics of ultracold atomic Bose and Fermi gases for advanced undergraduate and graduate students, as well as experimentalists and theorists. Chapters cover the statistical physics of trapped gases, atomic properties, cooling and trapping atoms, interatomic interactions, structure of trapped condensates, collective modes, rotating condensates, superfluidity, interference phenomena, and trapped Fermi gases. Problems are included at the end of each chapter.