Buckling of Shells


Book Description

Thin shells are very popular structures in many different branches of engineering. There are the domes, water and cooling towers, the contain ments in civil engineering, the pressure vessels and pipes in mechanical and nuclear engineering, storage tanks and platform components in marine and offshore engineering, the car bodies in the automobile industry, planes, rockets and space structures in aeronautical engineering, to mention only a few examples of the broad spectrum of application. In addition there is the large applied mechanics group involved in all the computational and experimental work in this area. Thin shells are in a way optimal structures. They play the role of·the "primadonnas" among all kinds of structures. Their performance can be extraordinary, but they can also be very sensitive. The susceptibility to buckling is a typical example. David Bushnell says in his recent review paper entitled "Buckling of Shells - Pitfall for DeSigners": "To the layman buckling is a mysterious, perhaps even awe inspiring phenomenon that transforms objects originally imbued with symmetrical beauty into junk".




Buckling of Bars, Plates, and Shells


Book Description




Buckling and Postbuckling of Beams, Plates, and Shells


Book Description

This book contains eight chapters treating the stability of all major areas of the flexural theory. It covers the stability of structures under mechanical and thermal loads and all areas of structural, loading and material types. The structural element may be assumed to be made of a homogeneous/isotropic material, or of a functionally graded material. Structures may experience the bifurcation phenomenon, or they may follow the postbuckling path. This volume explains all these aspects in detail. The book is self-contained and the necessary mathematical concepts and numerical methods are presented in such a way that the reader may easily follow the topics based on these basic tools. It is intended for people working or interested in areas of structural stability under mechanical and/or thermal loads. Some basic knowledge in classical mechanics and theory of elasticity is required.




Buckling of Thin Metal Shells


Book Description

Thin-walled metal shell structures are highly efficient in their use of material, but they are particularly sensitive to failure by buckiling. Many different forms of buckling can occur for different geometries and different loading conditions. Because this field of knowledge is both complex and industrially important, it is of great interest and concern in a wide range of industries. This book presents a compilation and synthesis of a wealth of research, experience and knowledge of the subject. Information that was previously widely scattered throughout the literature is assembled in a concise and convenient form that is easy to understand, and state-of-the-art research findings are thoroughly examined. This book is useful for those involved in the structural design of silos, tanks, pipelines, biodigestors, chimneys, towers, offshore platforms, aircraft and spacecraft. Buckling of Thin Metal Shells is essential reading for designers, researchers and code writers involved with thin-walled metal shell structures.




Elastic Stability of Circular Cylindrical Shells


Book Description

The object of this book is to clarify the whole aspect of the basic problems concerning the elastic stability of of circular cylindrical shells under typical loading conditions. The book deals with buckling, postbuckling and initial postbuckling problems under one of the three fundamental loads, that is, torsion, pressure and compression. The emphases are placed on the accurate analysis and comprehensive numeral results for the buckling problem, experimental verification of the theoretical analysis for the postbuckling problem and clarification of the range of applicability of the perturbation method for the analysis of initial postbuckling behaviors and imperfection sensitivity. The problems under typical combined loads as well as the influence of the contained liquid are also clarified.







Buckling and Post Buckling Structures


Book Description

This book provides an in-depth treatment of the study of the stability of engineering structures. Contributions from internationally recognized leaders in the field ensure a wide coverage of engineering disciplines in which structural stability is of importance, in particular the analytical and numerical modelling of structural stability applied to aeronautical, civil, marine and offshore structures. The results from a number of comprehensive experimental test programs are also presented, thus enhancing our understanding of stability phenomena as well as validating the analytical and computational solution schemes presented. A variety of structural materials are investigated with special emphasis on carbon-fibre composites, which are being increasingly utilized in weight-critical structures. Instabilities at the meso- and micro-scales are also discussed. This book will be particularly relevant to professional engineers, graduate students and researchers interested in structural stability.




Structural Stability Theory and Practice


Book Description

Discover the theory of structural stability and its applications in crucial areas in engineering Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shells combines necessary information on structural stability into a single, comprehensive resource suitable for practicing engineers and students alike. Written in both US and SI units, this invaluable guide is perfect for readers within and outside of the US. Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shell offers: Detailed and patiently developed mathematical derivations and thorough explanations Energy methods that are incorporated throughout the chapters Connections between theory, design specifications and solutions The latest codes and standards from the American Institute of Steel Construction (AISC), Canadian Standards Association (CSA), Australian Standards (SAA), Structural Stability Research Council (SSRC), and Eurocode 3 Solved and unsolved practice-oriented problems in every chapter, with a solutions manual for unsolved problems included for instructors Ideal for practicing professionals in civil, mechanical, and aerospace engineering, as well as upper-level undergraduates and graduate students in structural engineering courses, Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shell provides readers with detailed mathematical derivations along with thorough explanations and practical examples.




Theory of Shell Structures


Book Description

This book attempts to bring the essence of shell structures within the grasp of engineers. It tackles the fundamental question of how bending and stretching effects combine and interact in shell structures from a physical point of view; and shows that this approach leads to an understanding of the structural mechanics of shells in general.




Buckling of Shell Structures, on Land, in the Sea and in the Air


Book Description

This volume consists of papers presented at the International Colloquium on Buckling of Shell Structures, on Land, in the Sea and in the Air, Lyon, France, 17-19 September 1991.