Materials for Energy Efficiency and Thermal Comfort in Buildings


Book Description

Almost half of the total energy produced in the developed world is inefficiently used to heat, cool, ventilate and control humidity in buildings, to meet the increasingly high thermal comfort levels demanded by occupants. The utilisation of advanced materials and passive technologies in buildings would substantially reduce the energy demand and improve the environmental impact and carbon footprint of building stock worldwide.Materials for energy efficiency and thermal comfort in buildings critically reviews the advanced building materials applicable for improving the built environment. Part one reviews both fundamental building physics and occupant comfort in buildings, from heat and mass transport, hygrothermal behaviour, and ventilation, on to thermal comfort and health and safety requirements.Part two details the development of advanced materials and sustainable technologies for application in buildings, beginning with a review of lifecycle assessment and environmental profiling of materials. The section moves on to review thermal insulation materials, materials for heat and moisture control, and heat energy storage and passive cooling technologies. Part two concludes with coverage of modern methods of construction, roofing design and technology, and benchmarking of façades for optimised building thermal performance.Finally, Part three reviews the application of advanced materials, design and technologies in a range of existing and new building types, including domestic, commercial and high-performance buildings, and buildings in hot and tropical climates.This book is of particular use to, mechanical, electrical and HVAC engineers, architects and low-energy building practitioners worldwide, as well as to academics and researchers in the fields of building physics, civil and building engineering, and materials science. - Explores improving energy efficiency and thermal comfort through material selection and sustainable technologies - Documents the development of advanced materials and sustainable technologies for applications in building design and construction - Examines fundamental building physics and occupant comfort in buildings featuring heat and mass transport, hygrothermal behaviour and ventilation




Thermal Behaviour, Energy Efficiency in Buildings and Sustainable Construction


Book Description

This Special Issue includes 20 contributions from across the world with very interesting and current research topics, such as insulation solutions and CO2 emissions; thermal transmittance of LSF walls; statistics for China's building energy consumption; natural ventilation; thermal behavior of an earthbag building; thermal performance and comfort in a vernacular building; overheating risk under future extreme weather conditions; analytical methods to estimate the thermal transmittance of LSF walls; model simplification on energy and comfort simulation analysis; Trombe wall thermal behavior and energy efficiency of an LSF compartment; new metering hot box for in situ hygrothermal measurement; mechanical and thermal performance of compressed earth blocks; life-cycle assessment of a new house; energy analyses of Serbian buildings with horizontal overhangs; thermal properties of mortar blocks by using recycled glass; prediction of cooling energy consumption building using machine learning techniques; occupants' behavior, climate change, heating, and cooling energy needs of buildings; a new method for establishing a hygrothermally controlled test room; nonintrusive measurements to incorporate the air renovations in dynamic models; and retrofit of existing buildings with aerogel panels.




Thermal Inertia in Energy Efficient Building Envelopes


Book Description

The design and construction of the appropriate building envelope is one of the most effective ways for improving a building's thermal performance. Thermal Inertia in Energy Efficient Building Envelopes provides the optimal solutions, tools and methods for designing the energy efficient envelopes that will reduce energy consumption and achieve thermal comfort and low environmental impact. Thermal Inertia in Energy Efficient Building Envelopes provides experimental data, technical solutions and methods for quantifying energy consumption and comfort levels, also considering dynamic strategies such as thermal inertia and natural ventilation. Several type of envelopes and their optimal solutions are covered, including retrofit of existing envelopes, new solutions, passive systems such as ventilated facades and solar walls. The discussion also considers various climates (mild or extreme) and seasons, building typology, mode of use of the internal environment, heating profiles and cross-ventilation - Experimental investigations on real case studies, to explore in detail the behaviour of different envelopes - Laboratory tests on existing insulation to quantify the actual performances - Analytical simulations in dynamic conditions to extend the boundary conditions to other climates and usage profiles and to consider alternative insulation strategies - Evaluation of solutions sustainability through the quantification of environmental and economic impacts with LCA analysis; including global cost comparison between the different scenarios - Integrated evaluations between various aspects such as comfort, energy saving, and sustainability




Buildings' Thermal Behaviour and Energy Efficiency for a Sustainable Construction


Book Description

This reprint of the Topical Collection: "Buildings' Thermal Behaviour and Energy Efficiency for a Sustainable Construction", published in journal Buildings (mpdi), includes 22 contributions (19 articles, 1 review, 1 perspective and 1 systematic review), from across the world, with very interesting and actual research topics, such as: Energy Resilience Performance; Indoor Air Quality; Chopped Straw as an Insulation Material; Energy Retrofitting Practices; Sustainability Assessment of Cementitious Ceramic Tile Adhesives; Solar Radiation of Deciduous Trees' Shade; Building Integrated Photovoltaics (BIPV) façades; Environmental Dissatisfaction and Underheating Lowers Self-Perceived Health; Parameters Measured to Characterize Classrooms' Indoor Environmental Quality; Uncertainty Assessment of Mean Radiant Temperature Estimation for Indoor Thermal Comfort; Energy, Environmental and Economic Costs of Buildings' Thermal Insulation; Retrofit Strategies on Thermal Insulation Applied in Buildings; Estimating Heating Load in Residential Buildings; Sustainable and Universal Approach to Retrofitting Residential Buildings; Optimum Building Envelope Parameters of a Room Concerning Window-to-Wall Ratio, Orientation, Insulation Thickness and Window Type; Thermo-Energy Performance of LSF Constructions; Reuse of Insulators from CDW to Produce Lime Mortars; Renovation of Modernist Architecture; Evaluation of Non-Autoclaved Aerated Concrete for Energy Behaviors; Water Vapour Resistivity Properties; Thermal Performance of Double-Pane LSF Walls with and without a Reflective Foil; BIM-Based Energy Analysis and Sustainability Assessment.




Handbook of Energy Efficiency in Buildings


Book Description

Handbook of Energy Efficiency in Buildings: A Life Cycle Approach offers a comprehensive and in-depth coverage of the subject with a further focus on the Life Cycle. The editors, renowned academics, invited a diverse group of researchers to develop original chapters for the book and managed to well integrate all contributions in a consistent volume. Sections cover the role of the building sector on energy consumption and greenhouse gas emissions, international technical standards, laws and regulations, building energy efficiency and zero energy consumption buildings, the life cycle assessment of buildings, from construction to decommissioning, and other timely topics. The multidisciplinary approach to the subject makes it valuable for researchers and industry based Civil, Construction, and Architectural Engineers. Researchers in related fields as built environment, energy and sustainability at an urban scale will also benefit from the books integrated perspective. - Presents a complete and thorough coverage of energy efficiency in buildings - Provides an integrated approach to all the different elements that impact energy efficiency - Contains coverage of worldwide regulation




Intelligent Building Control Systems


Book Description

Readers of this book will be shown how, with the adoption of ubiquituous sensing, extensive data-gathering and forecasting, and building-embedded advanced actuation, intelligent building systems with the ability to respond to occupant preferences in a safe and energy-efficient manner are becoming a reality. The articles collected present a holistic perspective on the state of the art and current research directions in building automation, advanced sensing and control, including: model-based and model-free control design for temperature control; smart lighting systems; smart sensors and actuators (such as smart thermostats, lighting fixtures and HVAC equipment with embedded intelligence); and energy management, including consideration of grid connectivity and distributed intelligence. These articles are both educational for practitioners and graduate students interested in design and implementation, and foundational for researchers interested in understanding the state of the art and the challenges that must be overcome in realizing the potential benefits of smart building systems. This edited volume also includes case studies from implementation of these algorithms/sensing strategies in to-scale building systems. These demonstrate the benefits and pitfalls of using smart sensing and control for enhanced occupant comfort and energy efficiency.




A Handbook of Sustainable Building Design and Engineering


Book Description

The combined challenges of health, comfort, climate change and energy security cross the boundaries of traditional building disciplines. This authoritative collection, focusing mostly on energy and ventilation, provides the current and next generation of building engineering professionals with what they need to work closely with many disciplines to meet these challenges. A Handbook of Sustainable Building Engineering covers: how to design, engineer and monitor a building in a manner that minimises the emissions of greenhouse gases; how to adapt the environment, fabric and services of existing and new buildings to climate change; how to improve the environment in and around buildings to provide better health, comfort, security and productivity; and provides crucial expertise on monitoring the performance of buildings once they are occupied. The authors explain the principles behind built environment engineering, and offer practical guidance through international case studies.




Essential Building Science


Book Description

Down and dirty – a complete step-by-step guide to making, installing and living with beautiful, all-natural earthen floors Poor heat and moisture management are the enemies of durable, comfortable, and efficient housing, and good building design and construction starts with a solid understanding of good building science. Essential Building Science provides a highly visual and accessible introduction to the fundamentals of building science for residential construction. Part one covers the rationale behind high-performance design and the fundamentals of building physics, including thermal dynamics, moisture transfer, and hygro-thermal dynamics such as vapor drive and condensation. Part two teaches the vital critical thinking skills needed to consider buildings as whole systems and to develop thermal and moisture control strategies regardless of the specifics of the design. Case studies and examples from across North American climatic zones illuminate real-life problems and offer builders, designers, and DIYers the insights and tools required for creating better new buildings and dramatically improving old ones. Good science plus critical thinking equals high performance buildings.




Energy and Sustainable Futures


Book Description

This open access book presents papers displayed in the 2nd International Conference on Energy and Sustainable Futures (ICESF 2020), co-organised by the University of Hertfordshire and the University Alliance DTA in Energy. The research included in this book covers a wide range of topics in the areas of energy and sustainability including: • ICT and control of energy;• conventional energy sources;• energy governance;• materials in energy research;• renewable energy; and• energy storage. The book offers a holistic view of topics related to energy and sustainability, making it of interest to experts in the field, from industry and academia.




Sustainable Building - Design Manual


Book Description

This first volume of Sustainable building design manuals focuses on policy and regulatory mechanisms and serves as a guide to policy-makers and local authorities