Calculated and Measured Depth Dose Profiles in a Phantom Exposed to Neutron Radiation Fields


Book Description

An accurate evaluation of doses caused by external sources of neutron radiation depends on knowledge of the transport of radiation inside the human body. Health physicists use two primary methods for studying this radiation transport: computer calculations and measurements. Both computer calculations and measurements were performed under well controlled, nearly identical conditions to determine the extent of their agreement. A comparison of the dose profiles predicted by both measurements and calculations was thus possible. The measurements were performed in a cylindrical phantom made of tissue equivalent plastic. The phantom size, 61 cm high and 30 cm in diameter, was chosen to approximate the human torso and to match the dimensions of cylindrical phantoms used by previous calculations. Holes were drilled down through the phantom to accommodate small tissue equivalent proportional counters (TEPCs) at various depths in the phantom. These counters were used to measure the neutron dose inside the phantom when it was exposed to various sources of neutrons. The holes in the phantom could also accommodate miniature Geiger-Mueller detectors to measure the gamma component of the dose. Neutron and gamma dose profiles were measured for two different sources of neutrons: an unmoderated 252Cf source and a 733-keV neutron beam generated by a Van de Graaff accelerator. 14 refs., 13 figs., 11 tabs.







Neutron Production in a Spherical Phantom Aboard the International Space Station


Book Description

Since the beginning of space exploration in last century, several kinds of devices from passive and active dosimeters to radiation environment monitors have been used to measure radiation levels onboard different space crafts and shuttles allowing the space community to identify and quantify space radiation. The recent construction of several laboratories on the International Space Station (ISS) has confirmed that prolonged duration space missions are now becoming standard practice and as such, the need to better understand the potential risk of space radiation to Astronaut?s health, has become a priority for long mission planner. The complex internal radiation environment created within the ISS is due to high-energy particle interactions within the ISS shielded environment. As a result, a large number of secondary particles, that pose specific health risks, are created. Neutrons are one important component of this mixed radiation field due to their high LET. Therefore, the assessment of the neutron dose contribution has become an important part of the safety and monitoring program onboard the ISS. The need to determine whether neutron dose measured externally to the human body give an accurate and conservative estimate of the dose received internally is of paramount importance for long term manned space missions. This thesis presents a part of an ongoing large research program on radiation monitoring on ISS called Matroshka-R Project that was established to analyze the radiation exposure levels onboard the ISS using different radiation instruments and a spherical phantom to simulate human body. Monte Carlo transport code was used to simulate the interaction of high energy protons and neutrons with the spherical phantom currently onboard ISS. A Monte Carlo model of the phantom has been built, and it consists of seven spherical layers presenting different depths of the simulated tissue. The phantom has been exposed to individual proton energies and to a spectrum of neutrons. The flux of the created neutrons inside the phantom has been calculated. The internal to external neutron flux ratio was calculated and compared to the experimental data, recently, measured on three separate expeditions of the ISS. The results from the calculations showed that the value of the neutron fluxes inside and outside the phantom is different from the data recently measured with bubble detectors.




Proton Therapy Physics


Book Description

Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.










Neutron Dosimetry


Book Description