Book Description
By the time chemistry students are ready to study physical chemistry, they’ve completed mathematics courses through calculus. But a strong background in mathematics doesn’t necessarily equate to knowledge of how to apply that mathematics to solving physicochemical problems. In addition, in-depth understanding of modern concepts in physical chemistry requires knowledge of mathematical concepts and techniques beyond introductory calculus, such as differential equations, Fourier series, and Fourier transforms. This results in many physical chemistry instructors spending valuable lecture time teaching mathematics rather than chemistry. Barrante presents both basic and advanced mathematical techniques in the context of how they apply to physical chemistry. Many problems at the end of each chapter test students’ mathematical knowledge. Designed and priced to accompany traditional core textbooks in physical chemistry, Applied Mathematics for Physical Chemistry provides students with the tools essential for answering questions in thermodynamics, atomic/molecular structure, spectroscopy, and statistical mechanics.