Calculus with Multiple Variables Essential Skills Workbook


Book Description

For students who are already fluent with single-variable derivatives and integrals, this workbook offers practice with essential skills from multivariable calculus (including vector calculus). Each chapter begins with a review of the essential ideas and includes fully solved examples to help serve as a guide. The full solution to every exercise can be found at the back of the book. Authored by experienced teacher, Chris McMullen, Ph.D., this self-study math workbook covers: partial derivatives, extreme values with multiple variables (including saddle points), vectors, vector analysis (such as the dot and cross products), vector calculus, the gradient, divergence, the curl, the main coordinate systems (Cartesian, 2D polar, spherical, and cylindrical), path integrals, surface integrals, volume integrals, flux integrals, center of mass, moment of inertia, tangent and normal vectors, and more. The author, Chris McMullen, Ph.D., has over twenty years of experience teaching math skills to physics students. He prepared this workbook of the Improve Your Math Fluency series to share his strategies for solving calculus problems with multiple variables or vectors.




Essential Calculus Skills Practice Workbook with Full Solutions


Book Description

The author, Chris McMullen, Ph.D., has over twenty years of experience teaching math skills to physics students. He prepared this comprehensive workbook (with full solutions to every problem) to share his strategies for mastering calculus. This workbook covers a variety of essential calculus skills, including: derivatives of polynomials, trig functions, exponentials, and logarithms the chain rule, product rule, and quotient rule second derivatives how to find the extreme values of a function limits, including l'Hopital's rule antiderivatives of polynomials, trig functions, exponentials, and logarithms definite and indefinite integrals techniques of integration, including substitution, trig sub, and integration by parts multiple integrals The goal of this workbook isn't to cover every possible topic from calculus, but to focus on the most essential skills needed to apply calculus to other subjects, such as physics or engineering




Essential Calculus


Book Description

This book is for instructors who think that most calculus textbooks are too long. In writing the book, James Stewart asked himself: What is essential for a three-semester calculus course for scientists and engineers? ESSENTIAL CALCULUS, Second Edition, offers a concise approach to teaching calculus that focuses on major concepts, and supports those concepts with precise definitions, patient explanations, and carefully graded problems. The book is only 900 pages--two-thirds the size of Stewart's other calculus texts, and yet it contains almost all of the same topics. The author achieved this relative brevity primarily by condensing the exposition and by putting some of the features on the book's website, www.StewartCalculus.com. Despite the more compact size, the book has a modern flavor, covering technology and incorporating material to promote conceptual understanding, though not as prominently as in Stewart's other books. ESSENTIAL CALCULUS features the same attention to detail, eye for innovation, and meticulous accuracy that have made Stewart's textbooks the best-selling calculus texts in the world. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.




An Illustrative Guide to Multivariable and Vector Calculus


Book Description

This textbook focuses on one of the most valuable skills in multivariable and vector calculus: visualization. With over one hundred carefully drawn color images, students who have long struggled picturing, for example, level sets or vector fields will find these abstract concepts rendered with clarity and ingenuity. This illustrative approach to the material covered in standard multivariable and vector calculus textbooks will serve as a much-needed and highly useful companion. Emphasizing portability, this book is an ideal complement to other references in the area. It begins by exploring preliminary ideas such as vector algebra, sets, and coordinate systems, before moving into the core areas of multivariable differentiation and integration, and vector calculus. Sections on the chain rule for second derivatives, implicit functions, PDEs, and the method of least squares offer additional depth; ample illustrations are woven throughout. Mastery Checks engage students in material on the spot, while longer exercise sets at the end of each chapter reinforce techniques. An Illustrative Guide to Multivariable and Vector Calculus will appeal to multivariable and vector calculus students and instructors around the world who seek an accessible, visual approach to this subject. Higher-level students, called upon to apply these concepts across science and engineering, will also find this a valuable and concise resource.




Multivariable Calculus with Applications


Book Description

This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes’ and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathematics.




50 Challenging Algebra Problems (Fully Solved)


Book Description

These 50 challenging algebra problems involve applying a variety of algebra skills. The exercises come with a good range of difficulty from milder challenges to very hard problems. On the page following each problem you can find the full solution with explanations. quadratic equations system of equations cross multiplying factoring and distributing the f.o.i.l. method roots and powers fractions and negative numbers slopes and y-intercepts of straight lines word problems applications




Advanced Calculus (Revised Edition)


Book Description

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.




Essential Calculus-Based Physics Study Guide Workbook


Book Description

This combination of physics study guide and workbook focuses on essential problem-solving skills and strategies:Fully solved examples with explanations show you step-by-step how to solve standard university physics problems.Handy charts tabulate the symbols, what they mean, and their SI units.Problem-solving strategies are broken down into steps and illustrated with examples.Answers, hints, intermediate answers, and explanations are provided for every practice exercise.Terms and concepts which are essential to solving physics problems are defined and explained.




Master Essential Algebra Skills Practice Workbook with Answers: Improve Your Math Fluency


Book Description

Master essential algebra skills through helpful explanations, instructive examples, and plenty of practice exercises with full solutions. Authored by experienced teacher, Chris McMullen, Ph.D., this algebra book covers: distributing and factoring the FOIL method cross multiplying quadratic equations and the quadratic formula how to combine like terms and isolate the unknown an explanation of what algebra is a variety of rules for working with exponents solving systems of equations using substitution, simultaneous equations, or Cramer's rule algebra with inequalities The author, Chris McMullen, Ph.D., has over twenty years of experience teaching math skills to physics students. He prepared this workbook of the Improve Your Math Fluency series to share his strategies for solving algebra problems.




Book of Proof


Book Description

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.