Calderon-Zygmund Capacities and Operators on Nonhomogeneous Spaces


Book Description

Singular integral operators play a central role in modern harmonic analysis. Simplest examples of singular kernels are given by Calderon-Zygmund kernels. Many important properties of singular integrals have been thoroughly studied for Calderon-Zygmund operators. In the 1980's and early 1990's, Coifman, Weiss, and Christ noticed that the theory of Calderon-Zygmund operators can be generalized from Euclidean spaces to spaces of homogeneous type. The purpose of this book is to make the reader believe that homogeneity (previously considered as a cornerstone of the theory) is not needed. This claim is illustrated by presenting two harmonic analysis problems famous for their difficulty. The first problem treats semiadditivity of analytic and Lipschitz harmonic capacities. The volume presents the first self-contained and unified proof of the semiadditivity of these capacities. The book details Tolsa's solution of Painleve's and Vitushkin's problems and explains why these are problems of the theory of Calderon-Zygmund operators on nonhomogeneous spaces. The exposition is not dimension-specific, which allows the author to treat Lipschitz harmonic capacity and analytic capacity at the same time. The second problem considered in the volume is a two-weight estimate for the Hilbert transform. This problem recently found important applications in operator theory, where it is intimately related to spectral theory of small perturbations of unitary operators. The book presents a technique that can be helpful in overcoming rather bad degeneracies (i.e., exponential growth or decay) of underlying measure (volume) on the space where the singular integral operator is considered. These situations occur, for example, in boundary value problems for elliptic PDE's in domains with extremely singular boundaries. Another example involves harmonic analysis on the boundaries of pseudoconvex domains that goes beyond the scope of Carnot-Caratheodory spaces. The book is suitable for graduate students and research mathematicians interested in harmonic analysis.




Calderon-Zygmund Capacities and Operators on Nonhomogeneous Spaces


Book Description

Singular integral operators play the central part in modern harmonic analysis. Simplest examples of singular kernels are given by Calderón-Zygmund kernels. Many important properties of singular integrals have been thoroughly studied for Calderón-Zygmund operators. In the '80s and early '90s, Coifman, Weiss, and Christ noticed that the theory of Calderón-Zygmund operators can be generalized from Euclidean spaces to spaces of homogeneous type. The purpose of this book is to make the reader believe that homogeneity (previously considered as a cornerstone of the theory) is not needed. This claim i.




Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory


Book Description

This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995–2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin’s conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.




Advanced Courses Of Mathematical Analysis Ii - Proceedings Of The Second International School


Book Description

This volume comprises a collection of articles by leading researchers in mathematical analysis. It provides the reader with an extensive overview of new directions and advances in topics for current and future research in the field.




Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2)


Book Description

This book is the second of a two volume series. Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book features fully-refereed, high-quality papers exploring new results and trends in weighted norm inequalities, Schur-Agler class functions, complex analysis, dynamical systems, and dyadic harmonic analysis. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. A survey of the two weight problem for the Hilbert transform and an expository article on the Clark model to the case of non-singular measures and applications to the study of rank-one perturbations are included. The material for this volume is based on the 13th New Mexico Analysis Seminar held at the University of New Mexico, April 3-4, 2014 and on several special sections of the Western Spring Sectional Meeting at the University of New Mexico, April 4-6,2014. During the event, participants honored the memory of Cora Sadosky—a great mathematician who recently passed away and who made significant contributions to the field of harmonic analysis. Cora was an exceptional scientist and human being. She was a world expert in harmonic analysis and operator theory, publishing over fifty-five research papers and authoring a major textbook in the field. Participants of the conference include new and senior researchers, recent doctorates as well as leading experts in the area.




Selected Papers on Analysis and Differential Equations


Book Description

"Volume includes English translation of ten expository articles published in the Japanese journal Sugaku."




Harmonic Analysis and Partial Differential Equations


Book Description

This volume contains the Proceedings of the 8th International Conference on Harmonic Analysis and Partial Differential Equations, held in El Escorial, Madrid, Spain, on June 16-20, 2008. Featured in this book are papers by Steve Hoffmann and Carlos Kenig, which are based on two mini-courses given at the conference. These papers present topics of current interest, which assume minimal background from the reader, and represent state-of-the-art research in a useful way for young researchers. Other papers in this volume cover a range of fields in Harmonic Analysis and Partial Differential Equations and, in particular, illustrate well the fruitful interplay between these two fields.




The Riesz Transform of Codimension Smaller Than One and the Wolff Energy


Book Description

Fix $dgeq 2$, and $sin (d-1,d)$. The authors characterize the non-negative locally finite non-atomic Borel measures $mu $ in $mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known. As an application, the authors give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator $(-Delta )^alpha /2$, $alpha in (1,2)$, in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions.




Seminar of Mathematical Analysis


Book Description

This volume consists of the lecture notes of the Seminar on Mathematical Analysis which was held at the Universities of Malaga and Seville, Septembre 2002-February 2003.




Advanced Courses Of Mathematical Analysis Vi - Proceedings Of The Sixth International School


Book Description

This volume contains short courses and recent papers by several specialists in different fields of Mathematical Analysis. It offers a wide perspective of the current state of research, and new trends, in areas related to Geometric Analysis, Harmonic Analysis, Complex Analysis, Functional Analysis and History of Mathematics. The contributions are presented with a remarkable expository nature and this makes the discussed topics accessible to a more general audience.