Can Artificial Intelligence and Big Data Analytics Save the Future of Psychiatry?


Book Description

This book is the second of the series about the imperatives for the search for new psychiatry. As stated in my recent 2021 book about: The Search for New Psychiatry, current psychiatric practices have failed many: patients and their families, their doctors and the society at large. That was the end of the 2021 book and the beginning of this book as a follow up in search for pathways to a new and more effective science-based practice Based on its major contributions to the recent successful and expedient development of the Covid 19 vaccines, I am proposing the same pathway of using the new revolution in informatics as the way to save and secure the future of psychiatry and that is what I am recommending in this book reaping the benefit of AI and Big Data Analytics but with a wide open eye on its limits, reliability, risks, unforeseen or unintentional harms. Part Two of the book deals with a number of perineal and also new challenges that continue to require better understanding and resolution. Among the phenomenological and nosological challenges, the recent development by Neurology of its subspeciality of Behavioral Neurology in competition to Neuropsychiatry, is reviewed in terms of an opportunity for integration of the tow subspecialities towards the creation of a new third field of “Clinical Neurosciences”. Other challenges included are: The Subjective /Objective Dichotomy, Lunacy and the Moon- reflections on the interactions of the brain and environment and Woke Psychiatry, what is it? Several other clinical challenges include: The Past is Coming Back as The Future -The Rise, Fall and Rise Again of Psychedelics, Loneliness as the silent disorder and several other challenges. At the end, a postscript has been hastily added in memory of a close friend, a pioneering psychopharmacologist but above all an empathic humanist, Professor Thomas Arthur Ban or as he always preferred, Tom.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




Artificial Intelligence in Behavioral and Mental Health Care


Book Description

Artificial Intelligence in Behavioral and Mental Health Care summarizes recent advances in artificial intelligence as it applies to mental health clinical practice. Each chapter provides a technical description of the advance, review of application in clinical practice, and empirical data on clinical efficacy. In addition, each chapter includes a discussion of practical issues in clinical settings, ethical considerations, and limitations of use. The book encompasses AI based advances in decision-making, in assessment and treatment, in providing education to clients, robot assisted task completion, and the use of AI for research and data gathering. This book will be of use to mental health practitioners interested in learning about, or incorporating AI advances into their practice and for researchers interested in a comprehensive review of these advances in one source. - Summarizes AI advances for use in mental health practice - Includes advances in AI based decision-making and consultation - Describes AI applications for assessment and treatment - Details AI advances in robots for clinical settings - Provides empirical data on clinical efficacy - Explores practical issues of use in clinical settings




Artificial Intelligence Transformations for Healthcare Applications: Medical Diagnosis, Treatment, and Patient Care


Book Description

Artificial intelligence (AI) has emerged as a transformative force across various domains, revolutionizing the way we perceive and address challenges in healthcare. The convergence of AI and healthcare holds immense promise, offering unprecedented opportunities to enhance medical diagnosis, treatment, and patient care. In today’s world, the intersection of AI and healthcare stands as one of the most promising frontiers for innovation and progress. Artificial Intelligence Transformations for Healthcare Applications: Medical Diagnosis, Treatment, and Patient Care embodies this convergence, offering a comprehensive exploration of how AI is revolutionizing various aspects of healthcare delivery. At its core, this book addresses the urgent need for more effective and efficient healthcare solutions in an increasingly complex and data-rich environment. Covering topics such as chronic disease, image classification, and precision medicine, this book is an essential resource for healthcare professionals, medical researchers, AI and machine learning specialists, healthcare administrators and executives, medical educators and students, biomedical engineers, healthcare IT professionals, policy makers and regulators, academicians, and more.




Untapped Potential


Book Description




Predicting Human Decision-Making


Book Description

Human decision-making often transcends our formal models of "rationality." Designing intelligent agents that interact proficiently with people necessitates the modeling of human behavior and the prediction of their decisions. In this book, we explore the task of automatically predicting human decision-making and its use in designing intelligent human-aware automated computer systems of varying natures—from purely conflicting interaction settings (e.g., security and games) to fully cooperative interaction settings (e.g., autonomous driving and personal robotic assistants). We explore the techniques, algorithms, and empirical methodologies for meeting the challenges that arise from the above tasks and illustrate major benefits from the use of these computational solutions in real-world application domains such as security, negotiations, argumentative interactions, voting systems, autonomous driving, and games. The book presents both the traditional and classical methods as well as the most recent and cutting edge advances, providing the reader with a panorama of the challenges and solutions in predicting human decision-making.




Revolutionizing Healthcare Through Artificial Intelligence and Internet of Things Applications


Book Description

Medical internet of things (IoT)-based applications are being utilized in several industries and have been shown to provide significant advantages to users in critical health applications. Artificial intelligence (AI) plays a key role in the growth and success of medical IoT applications and IoT devices in the medical sector. To enhance revenue, improve competitive advantage, and increase consumer engagement, the use of AI with medical IoT should be encouraged in the healthcare and medical arena. Revolutionizing Healthcare Through Artificial Intelligence and Internet of Things Applications provides greater knowledge of how AI affects healthcare and medical efficacy in order to improve outputs. It focuses on a thorough and comprehensive introduction to machine learning. Covering topics such as patient treatment, cyber-physical systems, and telemedicine, this premier reference source is a dynamic resource for hospital administrators, medical professionals, government officials, students and faculty of higher education, librarians, researchers, and academicians.




Applications of Big Data in Healthcare


Book Description

Applications of Big Data in Healthcare: Theory and Practice begins with the basics of Big Data analysis and introduces the tools, processes and procedures associated with Big Data analytics. The book unites healthcare with Big Data analysis and uses the advantages of the latter to solve the problems faced by the former. The authors present the challenges faced by the healthcare industry, including capturing, storing, searching, sharing and analyzing data. This book illustrates the challenges in the applications of Big Data and suggests ways to overcome them, with a primary emphasis on data repositories, challenges, and concepts for data scientists, engineers and clinicians. The applications of Big Data have grown tremendously within the past few years and its growth can not only be attributed to its competence to handle large data streams but also to its abilities to find insights from complex, noisy, heterogeneous, longitudinal and voluminous data. The main objectives of Big Data in the healthcare sector is to come up with ways to provide personalized healthcare to patients by taking into account the enormous amounts of already existing data. Provides case studies that illustrate the business processes underlying the use of big data and deep learning health analytics to improve health care delivery Supplies readers with a foundation for further specialized study in clinical analysis and data management Includes links to websites, videos, articles and other online content to expand and support the primary learning objectives for each major section of the book




Big Data Analytics for Healthcare


Book Description

Big Data Analytics and Medical Information Systems presents the valuable use of artificial intelligence and big data analytics in healthcare and medical sciences. It focuses on theories, methods and approaches in which data analytic techniques can be used to examine medical data to provide a meaningful pattern for classification, diagnosis, treatment, and prediction of diseases. The book discusses topics such as theories and concepts of the field, and how big medical data mining techniques and applications can be applied to classification, diagnosis, treatment, and prediction of diseases. In addition, it covers social, behavioral, and medical fake news analytics to prevent medical misinformation and myths. It is a valuable resource for graduate students, researchers and members of biomedical field who are interested in learning more about analytic tools to support their work. - Presents theories, methods and approaches in which data analytic techniques are used for medical data - Brings practical information on how to use big data for classification, diagnosis, treatment, and prediction of diseases - Discusses social, behavioral, and medical fake news analytics for medical information systems




Machine Intelligence, Big Data Analytics, and IoT in Image Processing


Book Description

MACHINE INTELLIGENCE, BIG DATA ANALYTICS, AND IoT IN IMAGE PROCESSING Discusses both theoretical and practical aspects of how to harness advanced technologies to develop practical applications such as drone-based surveillance, smart transportation, healthcare, farming solutions, and robotics used in automation. The concepts of machine intelligence, big data analytics, and the Internet of Things (IoT) continue to improve our lives through various cutting-edge applications such as disease detection in real-time, crop yield prediction, smart parking, and so forth. The transformative effects of these technologies are life-changing because they play an important role in demystifying smart healthcare, plant pathology, and smart city/village planning, design and development. This book presents a cross-disciplinary perspective on the practical applications of machine intelligence, big data analytics, and IoT by compiling cutting-edge research and insights from researchers, academicians, and practitioners worldwide. It identifies and discusses various advanced technologies, such as artificial intelligence, machine learning, IoT, image processing, network security, cloud computing, and sensors, to provide effective solutions to the lifestyle challenges faced by humankind. Machine Intelligence, Big Data Analytics, and IoT in Image Processing is a significant addition to the body of knowledge on practical applications emerging from machine intelligence, big data analytics, and IoT. The chapters deal with specific areas of applications of these technologies. This deliberate choice of covering a diversity of fields was to emphasize the applications of these technologies in almost every contemporary aspect of real life to assist working in different sectors by understanding and exploiting the strategic opportunities offered by these technologies. Audience The book will be of interest to a range of researchers and scientists in artificial intelligence who work on practical applications using machine learning, big data analytics, natural language processing, pattern recognition, and IoT by analyzing images. Software developers, industry specialists, and policymakers in medicine, agriculture, smart cities development, transportation, etc. will find this book exceedingly useful.