Metastasis Research Protocols


Book Description

In Volume I, Analysis of Cells and Tissues, we presented a range of protocols aimed at mapping and analyzing the expression of various molecules of pot- tial interest in metastasis research and for examining their production at the genetic level. In this second volume of metastasis research protocols, we move to the level of living cells and tissues and present methodologies applicable to examining metastatic behavior in vitro and in whole animal models. The methods described in the first section of this volume concentrate on the separation of cell lines with high and low metastatic potential, including the genetic modification of cell lines. The assay systems to test defined aspects of the metastatic cascade are then described in Part II and include cell migration assays, assays for matrix degrading enzymes, basement membrane degrading assays, adhesion assays, and assays of angiogenesis. The role of the specific elements of the metastatic cascade assayed in each of these systems in turn must of course be put into perspective relative to their roles in entire living organisms.




Breast Cancer Metastasis and Drug Resistance


Book Description

Resistance to therapies, both targeted and systemic, and metastases to distant organs are the underlying causes of breast cancer-associated mortality. The second edition of Breast Cancer Metastasis and Drug Resistance brings together some of the leading experts to comprehensively understand breast cancer: the factors that make it lethal, and current research and clinical progress. This volume covers the following core topics: basic understanding of breast cancer (statistics, epidemiology, racial disparity and heterogeneity), metastasis and drug resistance (bone metastasis, trastuzumab resistance, tamoxifen resistance and novel therapeutic targets, including non-coding RNAs, inflammatory cytokines, cancer stem cells, ubiquitin ligases, tumor microenvironment and signaling pathways such as TRAIL, JAK-STAT and mTOR) and recent developments in the field (epigenetic regulation, microRNAs-mediated regulation, novel therapies and the clinically relevant 3D models). Experts also discuss the advances in laboratory research along with their translational and clinical implications with an overarching goal to improve the diagnosis and prognosis, particularly that of breast cancer patients with advanced disease.




Metastatic Cancer: Clinical and Biological Perspectives


Book Description

Most cancer deaths are a result of metastasis. The spread of a primary tumor to colonize neighboring and distant organs is the relentless endgame that defines the neoplastic process. Patients who have been diagnosed with cancer are treated to prevent both the recurrence of the tumor at the site of origin and metastasis that would re-stage them as advanced stage IV cancer. Historically and still with some types of cancer, stage IV is perceived by patients as “terminal.” Fortunately, recent molecular therapies have extended the lives of patients with advanced cancer and reassuringly people living with metastatic disease increasingly visit our clinics. What is the path forward? Given that the consilience of science and medicine is a dynamic art from which therapies arise, it would be misguided to consider any single work adequate at capturing the horizon for research. So with humility we constructed this text as primer for scientists. It begins with a broad introduction to the clinical management of common cancers. This is intended to serve as a foundation for investigators to consider when developing basic science hypotheses. Unquestionably, medical and surgical care of cancer patients reveals biology and dictates how novel therapeutics will ultimately be evaluated in clinical trials. The second section of this text offers provocative and evolving insights that underscore the breadth of science involved in the elucidation of cancer metastasis biology. The text concludes with information that integrates scientific and clinical foundations to highlight translational research. This book serves as a framework for scientists to conceptualize clinical and translational knowledge on the complexity of disease that is metastatic cancer.




Cancer Metastasis


Book Description

Metastasis is responsible for a large burden of morbidity and mortality among cancer patients, and currently few therapies specifically target metastatic disease. Further scientific dissection of the underlying pathways is required to pave the way for new therapeutic targets. This groundbreaking new text comprehensively covers the processes underlying cancer metastasis and the clinical treatment of metastatic disease. Whereas previous volumes have been compendia of laboratory research articles, the internationally renowned authors of this volume have summarized the state-of-the-art research in the metastasis field. A major section covers the cellular and molecular pathways of metastasis and experimental techniques and the systems and models applied in this field. Subsequently, the clinical aspects of the major cancer types are considered, focusing on disease-specific research and therapeutic approaches to metastatic disease. The focus is on novel pathophysiological insights and emerging therapies; future directions for research and unmet clinical needs are also discussed.




Brain Metastases


Book Description

Brain metastases are the most dreaded complication of systemic cancer, affecting some 170,000 people a year, a far greater incidence than primary brain tumors. This book presents current information on the presentation and management of patients with brain metastases, providing available data, giving guidelines that can be applied in day to day practice, updated information for neurosurgeons, radiation oncologists, medical oncologists, and neuron-oncologists, and as an overview for physicians in training.




Central Nervous System Metastases


Book Description

This book provides a comprehensive overview of brain metastases, from the molecular biology aspects to therapeutic management and perspectives. Due to the increasing incidence of these tumors and the urgent need to effectively control brain metastatic diseases in these patients, new therapeutic strategies have emerged in recent years. The volume discusses all these innovative approaches combined with new surgical techniques (fluorescence, functional mapping, integrated navigation), novel radiation therapy techniques (stereotactic radiosurgery) and new systemic treatment approaches such as targeted- and immunotherapy. These combination strategies represent a new therapeutic model in brain metastatic patients in which each medical practitioner (neurosurgeon, neurologist, medical oncologist, radiation oncologist) plays a pivotal role in defining the optimal treatment in a multidisciplinary approach. Written by recognized experts in the field, this book is a valuable tool for neurosurgeons, neuro-oncologists, neuroradiologists, medical oncologists, radiation oncologists, cognitive therapists, basic scientists and students working in the area of brain tumors.




Stereotactic Body Radiation Therapy


Book Description

Stereotactic body radiation therapy (SBRT) has emerged as an important innovative treatment for various primary and metastatic cancers. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.




Metastasis of Colorectal Cancer


Book Description

Colorectal cancer is the third most common cancer worldwide, and in many parts of the western world, it is the second leading cause of cancer-related deaths. This book covers colon cancer metastasis from the most fundamental aspects to clinical practice. Major topics include physiopathology, genetic and epigenetic controls, cancer initiating cells, epithelial-mesenchymal transition, growth factors and signalling, cell adhesion, natures of liver metastasis, angiogenesis and lymphangiogenesis, inflammatory response, prognostic markers, sentinel node and staging, and finally diagnosis and treatment. Each chapter has been contributed by leaders in the field. A key feature is that it connects with a large readership including students, fundamentalists and clinicians. Another specific feature of the book is that the chapters are written in a didactic and illustrative fashion. These characteristics coupled with the choice of the topics and authors, makes this book a reference in the field. It represents an essential acquisition for medical libraries, clinicians as well as medical and graduate students.




Central Nervous System Metastases in Lung Cancer Patients: From Prevention to Diagnosis and Treatment


Book Description

Approximately 40% of lung cancer patients will develop central nervous system (CNS) metastases during the course of their disease. Most of these are brain metastases, but up to 10% will develop leptomeningeal metastases. Known risk factors for CNS metastases development are small cell lung cancer (SCLC), adenocarcinoma histology, epidermal growth factor receptor (EGFR) mutant or anaplastic lymphoma kinase (ALK) rearranged lung cancer, advanced nodal status, tumor stage and younger age. CNS metastases can have a negative impact on quality of life (QoL) and overall survival (OS). The proportion of lung cancer patients diagnosed with CNS metastases has increased over the years due to increased use of brain imaging as part of initial cancer staging, advances in imaging techniques and better systemic disease control. Post contrast gadolinium enhanced magnetic resonance imaging (gd-MRI) is preferred, however when this is contra-indicated a contrast enhanced computed tomography (CE-CT) is mentioned as an alternative option. When CNS metastases are diagnosed, local treatment options consist of radiotherapy (stereotactic or whole brain) and surgery. Local treatment can be complicated by symptomatic radiation necrosis for which no high level evidence based treatment exists. Moreover, differential diagnosis with metastasis progression is difficult. Systemic treatment options have expanded over the last years. Until recently, chemotherapy was the only treatment option with a poor penetration in the CNS. Angiogenesis inhibitors are promising in the treatment of primary CNS tumors as well as radiation necrosis but clinical trials of anti-angiogenic agents in NSCLC have largely excluded patients with CNS metastases. Furthermore, research has also focused on methods to prevent development of CNS disease, for example with prophylactic cranial irradiation. Recently, checkpoint inhibitors have become available for NSCLC patients, and tyrosine kinase inhibitors (TKIs) have improved prognosis significantly in those with a druggable driver mutation. Newer TKIs are often designed to have better CNS penetration compared to first-generation TKIs. Despite advances in treatment options CNS metastases remain a problem in lung cancer and cause morbidity and mortality. This Research Topic provides an extensive resource of articles describing advances in CNS metastases management in lung cancer patients, from prevention to diagnosis and treatment.




Tumor Organoids


Book Description

Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.