Radiotherapy in Cancer Care


Book Description

Cancer treatment is complex and calls for a diverse set of services. Radiation therapy is recognized as an essential tool in the cure and palliation of cancer. Currently, access to radiation treatment is limited in many countries and non-existent in some. This lack of radiation therapy resources exacerbates the burden of disease and underscores the continuing health care disparity among States. Closing this gap represents an essential measure in addressing this global health equity problem. This publication presents a comprehensive overview of the major topics and issues to be taken into consideration when planning a strategy to address this problem, in particular in low and middle income countries. With contributions from leaders in the field, it provides an introduction to the achievements and issues of radiation therapy as a cancer treatment modality around the world. Dedicated chapters focus on the new radiotherapy technologies, proton beams, carbon ion, intraoperative radiotherapy, radiotherapy for children, treatment of HIV-AIDS malignancies, and costing and quality management issues.




Stereotactic Body Radiation Therapy


Book Description

Stereotactic body radiation therapy (SBRT) has emerged as an important innovative treatment for various primary and metastatic cancers. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.




Cancer, Radiation Therapy, and the Market


Book Description

Appraising cancer as a major medical market in the 2010s, Wall Street investors placed their bets on single-technology treatment facilities costing $100-$300 million each. Critics inside medicine called the widely-publicized proton-center boom "crazy medicine and unsustainable public policy." There was no valid evidence, they claimed, that proton beams were more effective than less costly alternatives. But developers expected insurance to cover their centers' staggeringly high costs and debts. Was speculation like this new to health care? Cancer, Radiation Therapy, and the Market shows how the radiation therapy specialty in the United States (later called radiation oncology) coevolved with its device industry throughout the twentieth-century. Academic engineers and physicians acquired financing to develop increasingly powerful radiation devices, initiated companies to manufacture the devices competitively, and designed hospital and freestanding procedure units to utilize them. In the process, they incorporated market strategies into medical organization and practice. Although palliative benefits and striking tumor reductions fueled hopes of curing cancer, scientific research all too often found serious patient harm and disappointing beneficial impact on cancer survival. This thoroughly documented and provocative inquiry concludes that public health policy needs to re-evaluate market-driven high-tech medicine and build evidence-based health care systems.




Image-Guided IMRT


Book Description

Intensity-modulated radiation therapy (IMRT), one of the most important developments in radiation oncology in the past 25 years, involves technology to deliver radiation to tumors in the right location, quantity and time. Unavoidable irradiation of surrounding normal tissues is distributed so as to preserve their function. The achievements and future directions in the field are grouped in the three sections of the book, each suitable for supporting a teaching course. Part 1 contains topical reviews of the basic principles of IMRT, part 2 describes advanced techniques such as image-guided and biologically based approaches, and part 3 focuses on investigation of IMRT to improve outcome at various cancer sites.




Cancer, Radiation Therapy, and the Market


Book Description

Appraising cancer as a major medical market in the 2010s, Wall Street investors placed their bets on single-technology treatment facilities costing $100-$300 million each. Critics inside medicine called the widely-publicized proton-center boom "crazy medicine and unsustainable public policy." There was no valid evidence, they claimed, that proton beams were more effective than less costly alternatives. But developers expected insurance to cover their centers’ staggeringly high costs and debts. Was speculation like this new to health care? Cancer, Radiation Therapy, and the Market shows how the radiation therapy specialty in the United States (later called radiation oncology) coevolved with its device industry throughout the twentieth-century. Academic engineers and physicians acquired financing to develop increasingly powerful radiation devices, initiated companies to manufacture the devices competitively, and designed hospital and freestanding procedure units to utilize them. In the process, they incorporated market strategies into medical organization and practice. Although palliative benefits and striking tumor reductions fueled hopes of curing cancer, scientific research all too often found serious patient harm and disappointing beneficial impact on cancer survival. This thoroughly documented and provocative inquiry concludes that public health policy needs to re-evaluate market-driven high-tech medicine and build evidence-based health care systems.




Radiation Therapy for Skin Cancer


Book Description

Photon Radiation Therapy for Skin Malignancies is a vital resource for dermatologists interested in radiation therapy, including the physics and biology behind treatment of skin cancers, as well as useful and pragmatic formulas and algorithms for evaluating and treating them. Dermatology has always been a field that overlaps multiple medical specialties and this book is no exception, with its focus on both dermatologists and radiation oncologists. It is estimated that between 2010 and 2020, the demand for radiation therapy will exceed the number of radiation oncologists practicing in the U.S. tenfold, which could profoundly affect the ability to provide patients with sufficient access to treatment. Photon Radiation Therapy for Skin Malignancies enhances the knowledge of dermatologists and radiation oncologists and presents them with the most up-to-date information regarding detection, delineation and depth determination of skin cancers, and appropriate biopsy techniques. In addition, the book also addresses radiation therapy of the skin and the skin’s reactions to radiation therapy.




Targeted Radionuclide Therapy


Book Description

Radioimmunotherapy, also known as systemic targeted radiation therapy, uses antibodies, antibody fragments, or compounds as carriers to guide radiation to the targets. It is a topic rapidly increasing in importance and success in treatment of cancer patients. This book represents a comprehensive amalgamation of the radiation physics, chemistry, radiobiology, tumor models, and clinical data for targeted radionuclide therapy. It outlines the current challenges and provides a glimpse at future directions. With significant advances in cell biology and molecular engineering, many targeting constructs are now available that will safely deliver these highly cytotoxic radionuclides in a targeted fashion. A companion website includes the full text and an image bank.




Biomedical Physics in Radiotherapy for Cancer


Book Description

The scientific and clinical foundations of Radiation Therapy are cross-disciplinary. This book endeavours to bring together the physics, the radiobiology, the main clinical aspects as well as available clinical evidence behind Radiation Therapy, presenting mutual relationships between these disciplines and their role in the advancements of radiation oncology.




Surface Guided Radiation Therapy


Book Description

Surface Guided Radiation Therapy provides a comprehensive overview of optical surface image guidance systems for radiation therapy. It serves as an introductory teaching resource for students and trainees, and a valuable reference for medical physicists, physicians, radiation therapists, and administrators who wish to incorporate surface guided radiation therapy (SGRT) into their clinical practice. This is the first book dedicated to the principles and practice of SGRT, featuring: Chapters authored by an internationally represented list of physicists, radiation oncologists and therapists, edited by pioneers and experts in SGRT Covering the evolution of localization systems and their role in quality and safety, current SGRT systems, practical guides to commissioning and quality assurance, clinical applications by anatomic site, and emerging topics including skin mark-less setups. Several dedicated chapters on SGRT for intracranial radiosurgery and breast, covering technical aspects, risk assessment and outcomes. Jeremy Hoisak, PhD, DABR is an Assistant Professor in the Department of Radiation Medicine and Applied Sciences at the University of California, San Diego. Dr. Hoisak’s clinical expertise includes radiosurgery and respiratory motion management. Adam Paxton, PhD, DABR is an Assistant Professor in the Department of Radiation Oncology at the University of Utah. Dr. Paxton’s clinical expertise includes patient safety, motion management, radiosurgery, and proton therapy. Benjamin Waghorn, PhD, DABR is the Director of Clinical Physics at Vision RT. Dr. Waghorn’s research interests include intensity modulated radiation therapy, motion management, and surface image guidance systems. Todd Pawlicki, PhD, DABR, FAAPM, FASTRO, is Professor and Vice-Chair for Medical Physics in the Department of Radiation Medicine and Applied Sciences at the University of California, San Diego. Dr. Pawlicki has published extensively on quality and safety in radiation therapy. He has served on the Board of Directors for the American Society for Radiology Oncology (ASTRO) and the American Association of Physicists in Medicine (AAPM).




Big Data in Radiation Oncology


Book Description

Big Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are: Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy. Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas. Discusses the fundamental principles and techniques for processing and analysis of big data. Address the use of big data in cancer prevention, detection, prognosis, and management. Provides practical guidance on implementation for clinicians and other stakeholders. Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013. Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.