Carbon-based Solids and Materials


Book Description

It is well known that solid carbons can be found in various guises with different forms of bulk phases (graphites, diamonds and carbynes) as well as more molecular forms (fullerenes,nanotubes and graphenes) resulting from recent discoveries. The cause of this rich polymorphism is analyzed in the first part of this book (chapters 1-5) with the propensity of carbon atoms for forming different types of homopolar chemical bonds associated with variable coordination numbers. Precursor organic molecules and parent compounds are also described to establish specific links with this rich polymorphism. Then in a second part (chapters 6-10) a comparative review of the main classes of bulk physical properties is presented. This approach emphasizes in particular the electronic behavior of (pi) polyaromatic systems organized in plane and curved atomic sheets. Finally in a third part (chapters 11-15) the surface and interface characteristics are introduced together with the texture and morphology of these multiscale carbon materials. An overview of the main field of applications is related showing the large use and interest for these solids.




Carbon-Based Material for Environmental Protection and Remediation


Book Description

Carbon-Based Material for Environmental Protection and Remediation presents an overview of carbon-based technologies and processes, and examines their usefulness and efficiency for environmental preservation and remediation. Chapters cover topics ranging from pollutants removal to new processes in materials science. Written for interested readers with strong scientific and technological backgrounds, this book will appeal to scientific advisors at private companies, academics, and graduate students.




Carbon Based Magnetism


Book Description

Carbon Based Magnetism is the most complete, detailed, and accurate guide on the magnetism of carbon, the main element of living creatures. Written by the leading experts in the field, the book provides a comprehensive review of relevant experimental data and theoretical concepts related to the magnetism of metal-free carbon systems. These systems include carbon based compounds, namely organic radical magnetic systems, and magnetic materials based on carbon structures. The aim is to advance the understanding of the fundamental properties of carbon. This volume discusses all major modern hypotheses on the physical nature of magnetic ordering in carbon systems. The first chapters deal with magnetic ordering mechanisms in p-electron systems as well as molecular magnets with spins residing only in p-orbitals. The following chapters explore the magnetic properties of pure carbon, with particular emphasis on nanosized carbon systems with closed boundary (fullerenes and nanotubes) and with open boundary (structures with edge-localized magnetic states). The remaining chapters focus on newer topics: experimental observation and theoretical models for magnetic ordering above room temperature in pure carbon. The book also includes twenty three review articles that summarize the most significant recent and ongoing exciting scientific developments and provide the explanation. It also highlights some problems that have yet to be solved and points out new avenues for research. This book will appeal to physicists, chemists and biologists. - The most complete, detailed, and accurate Guide in the magnetism of carbon - Dynamically written by the leading experts - Deals with recent scientific highlights - Gathers together chemists and physicists, theoreticians and experimentalists - Unified treatment rather than a series of individually authored papers - Description of genuine organic molecular ferromagnets - Unique description of new carbon materials with Curie temperatures well above ambient.




Industrial Carbon and Graphite Materials


Book Description

An excellent overview of industrial carbon and graphite materials, especially their manufacture, use and applications in industry. Following a short introduction, the main part of this reference deals with industrial forms, their raw materials, properties and manifold applications. Featuring chapters on carbon and graphite materials in energy application, and as catalysts. It covers all important classes of carbon and graphite, from polygranular materials to fullerenes, and from activated carbon to carbon blacks and nanoforms of carbon. Indispensable for chemists and engineers working in such fields as steel, aluminum, electrochemistry, nanotechnology, catalyst, carbon fibres and lightweight composites.




Handbook of Carbon-Based Nanomaterials


Book Description

Handbook of Carbon-Based Nanomaterials provides a comprehensive overview of carbon-based nanomaterials and recent advances in these specialized materials. This book opens with a brief introduction to carbon, including the different forms of carbon and their range of uses. Each chapter systematically covers a different type of carbon-based nanomaterial, including its individual characteristics, synthesis techniques and applications in industry, biomedicine and research. This book offers a broad handbook on carbon-based nanomaterials, detailing the materials aspects, applications and recent advances of this expansive topic. With its global team of contributing authors, Handbook of Carbon-Based Nanomaterials collates specific technical expertise from around the world, for each type of carbon-based nanomaterial. Due to the broad nature of the coverage, this book will be useful to an interdisciplinary readership, including researchers in academia and industry in the fields of materials science, engineering, chemistry, energy and biomedical engineering. - Covers a range of carbon-based nanomaterials, including graphene, fullerenes and much more - Describes key properties, synthesis techniques and characterization of each carbon-based nanomaterial - Discusses a range of applications of carbon-based nanomaterials, from biomedicine to energy applications




Element-Doped Functional Carbon-Based Materials


Book Description

Carbon materials are one of the most fascinating materials because of their unique properties and potential use in several applications. They can be obtained from residues or by using advanced synthesis technologies like chemical vapor deposition. The carbon family is very broad, ranging from classical activated carbons to more advanced species such as carbon nanotubes and graphene. The surface chemistry is one of the most interesting aspects of this broad family of materials, which allows the incorporation of different types of chemical functionalities or heteroatoms on the carbon surface, such as O, N, B, S, or P, which can modify the acid–base character, hydrophobicity/hydrophilicity, or the electronic properties of these materials and, thus, determine the final application. This book represents a collection of original research articles and communications focused on the synthesis, properties, and applications of heteroatom-doped functional carbon materials.




Carbon-based Nanomaterials in Analytical Chemistry


Book Description

Presenting the most relevant advances for employing carbon-based nanostructured materials for analytical purposes, this book serves as a reference manual that guides readers through the possibilities and helps when selecting the most appropriate material for targeted analytical applications. It critically discusses the role these nanomaterials can play in sample preparation, separation procedures and detection limit improvements whilst also considering the future trends in this field. Useful to direct initiatives, this book fills a gap in the literature for graduate students and professional researchers discussing the advantages and limitations across analytical chemistry in industry and academia.




Metal Oxide-Carbon Hybrid Materials


Book Description

Metal Oxide–Carbon Hybrid Materials: Synthesis, Properties and Applications reviews the advances in the fabrication and application of metal oxide–carbon-based nanocomposite materials. Their unique properties make them ideal materials for gas-sensing, photonics, catalysis, opto-electronic, and energy-storage applications. In the first section, the historical background to the hybrid materials based on metal oxide–carbon and the hybridized metal oxide composites is provided. It also highlights several popular methods for the preparation of metal oxide–carbon composites through solid-state or solution-phase reactions, and extensively discusses the materials' properties. Fossil fuels and renewable energy sources cannot meet the ever-increasing energy demands of an industrialized and technology-driven global society. Therefore, the role of metal oxide–carbon composites in energy generation, hydrogen production, and storage devices, such as rechargeable batteries and supercapacitors, is of extreme importance. These problems are discussed in in the second section of the book. Rapid industrialization has resulted in serious environmental issues which in turn have caused serious health problems that require the immediate attention of researchers. In the third section, the use of metal oxide–carbon composites in water purification, photodegradation of industrial contaminants, and biomedical applications that can help to clean the environment and provide better healthcare solutions is described. The final section is devoted to the consideration of problems associated with the development of sensors for various applications. Numerous studies performed in this area have shown that the use of composites can significantly improve the operating parameters of such devices. Metal Oxide–Carbon Hybrid Materials: Synthesis, Properties and Applications presents a comprehensive review of the science related to metal oxide–carbon composites and how researchers are utilizing these materials to provide solutions to a large array of problems. - Reviews the fundamental properties and fabrication methods of metal-oxide–carbon composites - Discusses applications in energy, including energy generation, hydrogen production and storage, rechargeable batteries, and supercapacitors - Includes current and emerging applications in environmental remediation and sensing




Nanotechnology-Enhanced Solid Materials


Book Description

This new volume highlights the emergence and rapid development of nanotechnology-enhanced solid materials and the ways they have impacted almost every aspect of nanoengineering. The chapters explore the role of nanomaterials in industries in diverse applications, such as for insulation and reinforcement of composite materials. The book focuses on the design, synthesis, and properties of solid materials, presenting updated, practical, and systematic knowledge on the modification of nanomaterials. The topics include photovoltaic applications of solid carbons, mesoporous silica nanomaterials, smart biopolymer composites and polymer solids, graphene oxide as an emerging solid-based nanocomposite material, steady-state creep deformation, and more.




Peptides and Peptide-based Biomaterials and their Biomedical Applications


Book Description

Solid-binding peptides have been used increasingly as molecular building blocks in nanobiotechnology as they can direct the assembly and functionalisation of a diverse range of materials and have the ability to regulate the synthesis of nanoparticles and complex nanostructures. Nanostructured materials such as β-sheet fibril-forming peptides and α-helical coiled coil systems have displayed many useful properties including stimulus-responsiveness, modularity and multi-functionality, providing potential technological applications in tissue engineering, antimicrobials, drug delivery and nanoscale electronics. The current situation with respect to self-assembling peptides and bioactive matrices for regenerative medicine are reviewed, as well as peptide-target modeling and an examination of future prospects for peptides in these areas.