Carbon for Sensing Devices


Book Description

This book reveals why carbon is playing such an increasingly prominent role as a sensing material. The various steps that transform a raw material in a sensing device are thoroughly presented and critically discussed. The authors deal with all aspects of carbon-based sensors, starting from the various hybridization and allotropes of carbon, with specific focus on micro and nano sized carbons (e.g., carbon nanotubes, graphene) and their growth processes. The discussion then moves to the role of functionalization and the different routes to achieve it. Finally, a number of sensing applications in various fields are presented, highlighting the connection with the basic properties of the various carbon allotropes. Readers will benefit from this book’s bottom-up approach, which starts from the local bonding in carbon solids and ends with sensing applications, linking the local hybridization of carbon atoms and its modification by functionalization to specific device performance. This book is a must-have in the library of any scientist involved in carbon based sensing application.




Carbon Nanomaterials-Based Sensors


Book Description

Carbon Nanomaterials-Based Sensors: Emerging Research Trends in Devices and Applications covers the most recent research and design trends for carbon nanomaterials-based sensors for a variety of applications, including clinical and environmental uses, and more. Carbon nanomaterials-based sensors can be used with high sensitivity, stability and accuracy compared to other techniques. Written by experts in their given fields from around the world, this book helps researchers solve the particular challenges they face when developing new types of sensors. It instructs how to make sensitive, selective, robust, fast-response and stable carbon nanomaterial-based sensors, as well as how to utilize them in real life. Covers the environmental monitoring and analytical implications of electro-analytical methods, one of the most dynamically developing branches of carbon nanomaterials Includes a complete discussion of functionalized nanostructure materials reformulated with noble materials and advanced characteristics for improved applications when compared to standard materials Covers sustainability and challenges in the commercialization of carbon nanomaterials-based sensors




Carbon Nanotube-Based Sensors


Book Description

Carbon Nanotube-Based Sensors: Fabrication, Characterization, and Implementation highlights the latest research and developments on carbon nanotubes (CNTs) and their applications in sensors and sensing systems. It offers an overview of CNTs, including their synthesis, functionalization, characterization, and toxicology. It then delves into the fabrication and various applications of CNT-based sensors. FEATURES Defines the significance of different forms of CNT-based sensors synthesized for diverse engineering applications and compares the feasibility of their generation Helps readers evaluate different types of fabrication techniques to generate CNTs and their subsequent sensing Discusses fabrication of low-cost, efficient CNTs-based sensors that can be used for diverse applications and sheds light on synthesis methods for a range of printing techniques Highlights challenges and advances in security-related issues using CNTs-based sensors This book is aimed at researchers in the fields of materials and electrical engineering who are interested in the development of sensor technology for industrial, biomedical, and related applications.




Carbon Nanomaterials-Based Sensors


Book Description

Carbon Nanomaterials-Based Sensors: Emerging Research Trends in Devices and Applications covers the most recent research and design trends for carbon nanomaterials-based sensors for a variety of applications, including clinical and environmental uses, and more. Carbon nanomaterials-based sensors can be used with high sensitivity, stability and accuracy compared to other techniques. Written by experts in their given fields from around the world, this book helps researchers solve the particular challenges they face when developing new types of sensors. It instructs how to make sensitive, selective, robust, fast-response and stable carbon nanomaterial-based sensors, as well as how to utilize them in real life. Covers the environmental monitoring and analytical implications of electro-analytical methods, one of the most dynamically developing branches of carbon nanomaterials Includes a complete discussion of functionalized nanostructure materials reformulated with noble materials and advanced characteristics for improved applications when compared to standard materials Covers sustainability and challenges in the commercialization of carbon nanomaterials-based sensors




Carbon Dioxide Sensing


Book Description

The book provides the reader with a profound knowledge of basic principles, properties and preferred applications of diverse kinds of CO2 measurement. It shows the advantages, disadvantages and limitations of several methods and gives a comprehensive overview of both possible applications and corresponding boundary conditions. Applications reach from environmental monitoring to safety control to biotechnology and food control and finally to medicine.




Carbon-Based Nanosensor Technology


Book Description

Carbon nanomaterials have gained relevance in chem/bio sensing applications owing to their unique chemical, mechanical, electrical, and thermal characteristics. Written by leading experts in the field, this book discusses selected, state-of-the art carbon-based nanomaterials, including nanodiamonds, graphene nanodots, carbon nanopores, and nanocellulose. It presents examples of chem/bio sensing applications ranging from biomedical studies, such as DNA sequencing and neurotransmitter sensing, to heavy-metal detection in environmental monitoring scenarios, and reviews the unique properties of carbon-based nanomaterials with respect to targeted sensing applications. Further, it highlights exciting future applications. Providing comprehensive information for practitioners and scientists working in the field of carbon nanomaterial technologies and their application, it is also a valuable resource for advanced students of analytical chemistry, biochemistry, electrochemistry, materials science, and micro-/nanotechnology and -sensing.




Graphene-Based Electrochemical Sensors for Biomolecules


Book Description

Graphene-Based Electrochemical Sensors for Biomolecules presents the latest on these nanomaterials that have gained a lot of attention based on their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage and sensor applications. The hybridization of graphene with other nanomaterials induces a synergetic effect, leading to the improvement in electrical conductivity, stability and an enhancement of the electrocatalytic activity of the new nanocomposite material. This book discusses the electrochemical determination of a variety of biomolecules using graphene-based nanocomposite materials. Finally, recent progress in the development of electrochemical sensors using graphene-based nanocomposite materials and perspectives on future opportunities in sensor research and development are discussed in detail. Covers the importance of detecting biomolecules and the application of graphene and its nanocomposite materials in the detection of a wide variety of bioanalytes Presents easily understood fundamentals of electrochemical sensing systems and the role of graphene-based nanocomposite materials in research and development




Carbon Nanomaterial Electronics: Devices and Applications


Book Description

This book brings together selective and specific chapters on nanoscale carbon and applications, thus making it unique due to its thematic content. It provides access to the contemporary developments in carbon nanomaterial research in electronic applications. Written by professionals with thorough expertise in similar broad area, the book is intended to address multiple aspects of carbon research in a single compiled edition. It targets professors, scientists and researchers belonging to the areas of physics, chemistry, engineering, biology and medicine, and working on theory, experiment and applications of carbon nanomaterials.




Toxic Gas Sensors and Biosensors


Book Description

The book focuses on novel sensor materials and their environmental and healthcare applications, such as NO2 detection, toxic gas and biosensing, hydrazine determination, glucose sensing and the detection of toxins and pollutants on surfaces. Materials covered include catalytic nanomaterials, metal oxides, perovskites, zeolites, spinels, graphene-based gas sensors, CNT/Ni nanocomposites, glucose biosensors, single and multi-layered stacked MXenes, black phosphorus, transition metal dichalcogenides and P3OT thin films. Keywords: Toxic Gas Sensors, Biosensors, Nitrogen Dioxide Detection, Hydrazine Determination, Glucose Sensing, Catalytic Nanomaterials, Metal Oxides, Perovskites, Zeolites, Spinels, Graphene-based Gas Sensors, CNT/Ni Nanocomposites, Mxenes, Black Phosphorus, Transition Metal Dichalcogenides, P3OT Thin Films.




Carbon Nanotube and Graphene Device Physics


Book Description

The first introductory textbook to explain the properties and performance of practical nanotube devices and related applications.