Carbon Nanotubes for Biomedical Applications


Book Description

This book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.







Carbon Nanostructures for Biomedical Applications


Book Description

Carbon nanostructures, namely fullerenes, single and multiwall carbon nanotubes, graphene as well as the most recent graphene quantum dots and carbon nanodots, have experienced a tremendous progress along the last two decades in terms of the knowledge acquired on their chemical and physical properties. These insights have enabled their increasing use in biomedical applications, from scaffolds to devices. Edited by renowned experts in the subject, this book collects and delineates the most notable advances within the growing field surrounding carbon nanostructures for biomedical purposes. Exploration ranges from fundamentals around classifications to toxicity, biocompatibility and the immune response. Modified nanocarbon-based materials and emergent classes, such as carbon dots and nanohorns are discussed, with chapters devoted from carriers for drug delivery and inhibitors of emergent viruses infection, to applications across imaging, biosensors, tissue scaffolding and biotechnology. The book will provide a valuable reference resource and will extensively benefit researchers and professionals working across the fields of chemistry, materials science, and biomedical and chemical engineering.




Nanotechnology for Biology and Medicine


Book Description

This text book will bring together a mix of both internationally known and established senior scientists along side up and coming (but already accomplished) junior scientists that have varying expertise in fundamental and applied nanotechnology to biology and medicine.




Bio-Applications of Nanoparticles


Book Description

This edited book highlights the central players in the Bionanotechnology field - which are the nanostructures and biomolecules. It provides broad examples of current developments in Bionanotechnology research and is an excellent introduction to the field. The book describes how nanostructures are synthesized and details the wide variety of nanostructures available for biological research and applications. Examples of the unique properties of nanostructures are provided along with the current applications of these nanostructures in biology and medicine. The final chapters of the book describe the toxicity of nanostructures.




Biomedical Applications of Nanoparticles


Book Description

Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies. Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies. - Highlights the term nanotherapeutics and presents several classifications of nanotherapeutics from different points-of-view - Presents the recent progress related to nanotherapeutics in the oral cavity - Provides the recent progress in the field of biomedical nanoparticles




Carbon Nanotubes


Book Description

Since their discovery more than a decade ago, carbon nanotubes (CNTs) have held scientists and engineers in captive fascination, seated on the verge of enormous breakthroughs in areas such as medicine, electronics, and materials science, to name but a few. Taking a broad look at CNTs and the tools used to study them, Carbon Nanotubes: Properties and Applications comprises the efforts of leading nanotube researchers led by Michael O’Connell, protégé of the late father of nanotechnology, Richard Smalley. Each chapter is a self-contained treatise on various aspects of CNT synthesis, characterization, modification, and applications. The book opens with a general introduction to the basic characteristics and the history of CNTs, followed by discussions on synthesis methods and the growth of “peapod” structures. Coverage then moves to electronic properties and band structures of single-wall nanotubes (SWNTs), magnetic properties, Raman spectroscopy of electronic and chemical behavior, and electromechanical properties and applications in NEMS (nanoelectromechanical systems). Turning to applications, the final sections of the book explore mechanical properties of SWNTs spun into fibers, sidewall functionalization in composites, and using SWNTs as tips for scanning probe microscopes. Taking a fresh look at this burgeoning field, Carbon Nanotubes: Properties and Applications points the way toward making CNTs commercially viable.




Carbon Nanotechnology


Book Description

Nanotechnology is no longer a merely social talking point and is beginning to affect the lives of everyone. Carbon nanotechnology as a major shaper of new nanotechnologies has evolved into a truly interdisciplinary field, which encompasses chemistry, physics, biology, medicine, materials science and engineering. This is a field in which a huge amount of literature has been generated within recent years, and the number of publications is still increasing every year. Carbon Nanotechnology aims to provide a timely coverage of the recent development in the field with updated reviews and remarks by world-renowned experts. Intended to be an exposition of cutting-edge research and development rather than a kind of conference proceeding, Carbon Nanotechnology will be very useful not only to experienced scientists and engineers, who wish to broaden their knowledge of the wide-ranging nanotechnology and/or to develop practical devices, but also to graduate and senior undergraduate students who look to make their mark in this field of the future.· A comprehensive treatment from materials chemistry and structure-property to practical applications· Offers an in-depth analysis of various carbon nanotechnologies from both fundamental and practical perspectives· An easily accessible assessment of the materials properties and device performances based on all of the major classes of carbon nanomaterials, including: carbon fiber; diamond; C60; and carbon nanotubes· A concise compilation of the practical applications of carbon nanotechnologies from polymer-carbon nanocomposites to sensors, electron emitters, and molecular electronics




Syntheses and Applications of Carbon Nanotubes and Their Composites


Book Description

Carbon nanotubes are rolled up graphene sheets with a quasi-one-dimensional structure of nanometer-scale diameter. In these last twenty years, carbon nanotubes have attracted much attention from physicists, chemists, material scientists, and electronic device engineers, because of their excellent structural, electronic, optical, chemical and mechanical properties. More recently, demand for innovative industrial applications of carbon nanotubes is increasing. This book covers recent research topics regarding syntheses techniques of carbon nanotubes and nanotube-based composites, and their applications. The chapters in this book will be helpful to many students, engineers and researchers working in the field of carbon nanotubes.




Nanoengineering of Biomaterials


Book Description

A comprehensive discussion of various types of nanoengineered biomaterials and their applications In Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications, an expert team of chemists delivers a succinct exploration of the synthesis, characterization, in-vitro and in-vivo drug molecule release, pharmacokinetic activity, pharmacodynamic activity, and the biomedical applications of several types of nanoengineered biomaterials. The editors have also included resources to highlight the most current developments in the field. The book is a collection of valuable and accessible reference sources for researchers in materials chemistry and related disciplines. It uses a functions-directed approach to using organic and inorganic source compounds that translate into biological systems as scaffolds, micelles, dendrimers, and other delivery systems. Nanoengineering of Biomaterials offers readers up-to-date chemistry and material science insights that are readily transferrable to biomedical systems. The book also includes: Thorough introductions to alginate nanoparticle delivery of therapeutics and chitosan-based nanomaterials in biological applications Comprehensive explorations of nanostructured carrageenan as a drug carrier, gellan gum nanoparticles in drug delivery, and guar-gum nanoparticles in the delivery of bioactive molecules Practical discussions of protein-based nanoparticles for drug delivery, solid lipid nanoparticles as drug carriers, and pH-responsive nanoparticles in therapy In-depth examinations of stimuli-responsive nano carriers in drug targeting Perfect for pharmaceutical chemists, materials scientists, polymer chemists, life scientists, and medicinal chemists, Nanoengineering of Biomaterials: Drug Delivery and Biomedical Applications is also an indispensable resource for biologists and bioengineers seeking a one-stop reference on the transferability of materials chemistry and nanotechnology to biomedicine.