Catalysis Research at the Cutting Edge


Book Description

The chemical or biological process whereby the presence of an external compound, a catalyst, serves as an agent to cause a chemical reaction to occur or to improve reaction performance without altering the external compound. Catalysis is a very important process from an industrial point of view since the production of most industrially important chemicals involve catalysis. Research into catalysis is a major field in applied science, and involves many fields of chemistry and physics. The new book brings together leading research in this vibrant field.




Homogeneous Catalysis


Book Description

Over the last decade, the area of homogeneous catalysis with transition metal has grown in great scientific interest and technological promise, with research in this area earning three Nobel Prizes and filing thousands of patents relating to metallocene and non-metallocene single site catalysts, asymmetric catalysis, carbon-carbon bond forming metathesis and cross coupling reactions. This text explains these new developments in a unified, cogent, and comprehensible manner while also detailing earlier discoveries and the fundamentals of homogeneous catalysis. Serving as a self-study guide for students and all chemists seeking to gain entry into this field, it can also be used by experienced researchers from both academia and industry for referring to leading state of the art review articles and patents, and also as a quick self-study manual in an area that is outside their immediate expertise. The book features: • Topics including renewable feed stocks (biofuel, glycerol), carbon dioxide based processes (polycarbonates), fluorous solvents, ionic liquid, hydroformylation, polymerization, oxidation, asymmetric catalysis, and more • Basic principles of organometallic chemistry, homogeneous catalysis, and relevant technological issues • Problems and answers, industrial applications (case studies), and examples from proven industrial processes with clear discussions on environmental and techno-commercial issues • Extensive references to cutting edge research with application potential and leading patents • Tables and illustrations to help explain difficult concepts




Heterogeneous Catalytic Redox Reactions


Book Description

The current book brings together cutting-edge research in the area of heterogeneous catalytic redox processes. The first part of the book covers the catalytic properties of transition metal oxides and the techniques for catalysts preparation, such as mechanochemistry, plasmochemistry, hydrothermal treatment, etc. Further the authors focus on mechanisms of heterogeneous redox reactions followed by the overview of industrial applications.




Applications Of X-ray Photoelectron Spectroscopy To Catalytic Studies: From Routine Analysis To Cutting-edge Surface Characterization


Book Description

X-ray photoelectron spectroscopy (XPS) has become a standard practice technique, and automated XPS facilities can be found in industry and in universities all over the world. This transformed XPS from an advanced characterization method for dedicated research, to a rather standard analysis technique of surface analysis. The catalyst's surface state is probably the most prominent factor that influences the catalytic performance. It is therefore no surprise that XPS has become an indispensable tool in studies of solid catalysts. It has been directly used to investigate issues such as the surface composition of the active catalyst and reaction and deactivation mechanisms.The objective of this book is to provide a comprehensive overview of the current status and future perspectives of X-ray photoelectron spectroscopy dedicated to catalytic applications, including thermal catalysis, electrocatalysis, and photo(electro)catalysis. The book contains 13 chapters, starting with the necessary introduction of the technique background, including basic phenomena and instrumentation aspects. The second part of the book focuses on the presentation of long-established applications of the technique, such as XPS studies of model catalysts. Finally, the book describes relatively recent developments of this method for cutting-edge surface characterization mainly using synchrotron X-ray radiation.




Emerging Carbon Materials for Catalysis


Book Description

Emerging Carbon Materials for Catalysis covers various carbon-based materials with a focus on their utility for catalysis. Each chapter examines the photo and electrocatalytic applications of a material, including hybrid systems composed of carbon materials. The range of chemical reactions that can be catalyzed with each material-as well as the potential drawbacks of each-are discussed. Covering nanostructured systems, as well as other microstructured materials, the book reviews emerging carbon-based structures, including carbon organic frameworks. Written by a global team of experts, this volume is ideal for graduate students and researchers working in organic chemistry, catalysis, nanochemistry, and nanomaterials. Introduces novel and emerging carbon materials with utility for photocatalysis and electrocatalysis Covers a wide range of photochemical and electrochemical processes that can be catalyzed by carbon-based catalysts Addresses the hybrid systems composed of carbon materials for catalysis Serves as an ideal reference for graduate students and researchers working in organic chemistry, catalysis, nanochemistry, and nanomaterials.




Solid Base Catalysts


Book Description

Foundational knowledge and practical approaches of an interesting catalyst class for greener and cleaner chemical synthesis Solid Base Catalysts provides insights and information on cutting-edge heterogeneous catalysis technologies and approaches of non-corrosive and easy-to-use solid catalysts that can replace conventional liquid catalysts that are known to pose operational problems. Edited by three highly qualified authors with contributions from experts in industry and academia, Solid Base Catalysts includes: Latest and most advanced studies in the characterization of solid catalysts, with applications in various organic transformations Versatile reaction types where solid catalysts can be used as well as the multidisciplinary nature of solid base catalyst research and its connections to other fields Multicomponent reactions for eco-compatible heterocyclic synthesis over solid catalysts and synthesis routes, experimental protocols, and other considerations for optimizing catalyst properties Advanced methodologies and applications for analyzing solid catalysts and challenges and future prospects in the field Solid Base Catalysts is a complete reference on the subject for researchers and professionals in materials science, green chemistry, surface chemistry, and chemical engineering.




Activity report


Book Description




Nanotechnology in Catalysis 3


Book Description

This volume continues the tradition formed in Nanotechnology in Catalysis 1 and 2. As with those books, this one is based upon an ACS symposium. Some of the most illustrious names in heterogeneous catalysis are among the contributors. The book covers: Design, synthesis, and control of catalysts at nanoscale; understanding of catalytic reaction at nanometer scale; characterization of nanomaterials as catalysts; nanoparticle metal or metal oxides catalysts; nanomaterials as catalyst supports; new catalytic applications of nanomaterials.




Trends in Catalysis Research


Book Description

Catalysis is the chemical or biological process whereby the presence of an external compound, a catalyst, serves as an agent to cause a chemical reaction to occur or to improve reaction performance without altering the external compound. Catalysis is a very important process from an industrial point of view since the production of most industrially important chemicals involve catalysis. Research into catalysis is a major field in applied science, and involves many fields of chemistry and physics. The book brings together leading research in this vibrant field.




Springer Handbook of Advanced Catalyst Characterization


Book Description

Co-edited by world-renowned scientists in the field of catalysis, this book contains the cutting-edge in situ and operando spectroscopy characterization techniques operating under reaction conditions to determine a materials’ bulk, surface, and solution complex and their applications in the field of catalysis with emphasis on solid catalysts in powder form since such catalyst are relevant for industrial applications. The handbook covers from widely-used to cutting-edge techniques. The handbook is written for a broad audience of students and professionals who want to pursue the full capabilities available by the current state-of-the-art in characterization to fully understand how their catalysts really operate and guide the rational design of advanced catalysts. Individuals involved in catalysis research will be interested in this handbook because it contains a catalogue of cutting-edge methods employed in characterization of catalysts. These techniques find wide use in applications such as petroleum refining, chemical manufacture, natural gas conversion, pollution control, transportation, power generation, pharmaceuticals and food processing. fdsfds