Catalyst Deactivation 1994


Book Description

Catalyst Deactivation 1994 was an expansion of earlier, highly successful symposia. The objective of the symposium was to promote a scientific approach of the phenomenon of catalyst deactivation which will contribute to the development of catalysts which are less subject to structural transformations and more resistant to poisons and coke formation. These aspects are dealt with in 12 plenary lectures, 48 oral presentations and 35 poster papers, which were critically selected from an impressive response from some 30 countries.Both fundamental and applied aspects were covered. The deactivation of catalysts in important industrial processes like fluid bed catalytic cracking hydrotreatment, hydrodesulfurization, catalytic reforming, hydrodenitrogenation, steam reforming, hydrodemetallization, hydrocracking, Fischer-Tropsch synthesis, propane dehydrogenation, phthalic anhydride synthesis received considerable attention. Mechanisms of poisoning, sintering and coking were further investigated and modelled and new experimental techniques for the characterization and the quantification of deactivation were also introduced.




Basic Principles in Applied Catalysis


Book Description

Written by a team of internationally recognized experts, this book addresses the most important types of catalytic reactions and catalysts as used in industrial practice. Both applied aspects and the essential scientific principles are described. The main topics can be summarized as follows: heterogeneous, homogeneous and biocatalysis, catalyst preparation and characterization, catalytic reaction engineering and kinetics, catalyst deactivation and industrial perspective.







Deactivation and Regeneration of Zeolite Catalysts


Book Description

In chemical processes, the progressive deactivation of solid catalysts is a major economic concern and mastering their stability has become as essential as controlling their activity and selectivity. For these reasons, there is a strong motivation to understand the mechanisms leading to any loss in activity and/or selectivity and to find out the efficient preventive measures and regenerative solutions that open the way towards cheaper and cleaner processes. This book covers in a comprehensive way both the fundamental and applied aspects of solid catalyst deactivation and encompasses the state-of-the-art in the field of reactions catalyzed by zeolites. This particular choice is justified by the widespread use of molecular sieves in refining, petrochemicals and organic chemicals synthesis processes, by the large variety in the nature of their active sites (acid, base, acid-base, redox, bifunctional) and especially by their peculiar features, in terms of crystallinity, structural order and textural properties, which make them ideal models for heterogeneous catalysis. The aim of this book is to be a critical review in the field of zeolite deactivation and regeneration, by collecting a series of contributions by experts in the field which describe the factors, explain the techniques to study the causes and suggest methods to prevent (or limit) catalyst deactivation. At the same time, an anthology of commercial processes and exemplar cases provides the reader with theoretical insights and practical hints on the deactivation mechanisms and draws attention to the key role played by the loss of activity on process design and industrial practice.




Catalyst Deactivation 1997


Book Description

Catalyst Deactivation 1997 focused on 9 key topical areas: carbon deposition and coke formation, chemicals, environmental catalysis, modeling, petroleum processing, poisoning, syngas conversion, techniques, and thermal degradation. All of these areas were well represented at the meeting; moreover, several review articles were presented that provide perspectives on new research and development thrusts. The proceedings of the meeting are organized with six review and award articles at the front of the volume followed by topical articles a keynote, 5-6 oral, and 2-3 poster papers. A list of authors is provided at the end of the book. It should be emphasized that all of the papers were ranked and reviewed by members of the Scientific Committee.




Deactivation and Poisoning of Catalysts


Book Description

Deactivation and Poisoning of Catalysts presents the most current research in the area of heterogeneous catalysis. It focuses on the chemically induced effects associated with bonded surface species that cause catalyst activity decline -- and in some cases a change in catalyst specificity. In addition, this volume examines poisoning of dispersed metal catalysts ... the thermodynamics of sulfur-metal and carbon-metal interactions ... model poisoning reactions on single crystals ... deactivation in petroleum refining and petrochemical processes ... coking of metal catalysts ... and more. The new approaches and solutions to catalyst deactivation and poisoning presented in this guide are invaluable to all heterogeneous catalysis specialists, including chemical and petroleum engineers, and surface, synthetic, physical, and industrial chemists. Book jacket.




Combinatorial Catalysis and High Throughput Catalyst Design and Testing


Book Description

Catalysts are central in modern industrial chemistry and there is an urgent need to develop new catalysts. Such a rapid pace of development brings with it a new set of challenges at all levels of research, from synthesis and characterization to testing and modelling. This book reviews the current status of combinatorial catalysis, scientific catalyst design techniques, methods for preparing inorganic combinatorial libraries, experimental design methods, data processing, system modelling an simulation, and catalyst testing. The individual contributions reveal the development of high throughput catalyst design and test methods and identify the main challenges in the field, including new catalyst preparation techniques, rapid performance evaluation, and new microreactor configurations. Readership: All those working in catalytic process analysis and development. The extensive review of catalysis principles is especially relevant for postgraduate students seeking to pursue studies in catalysis.




Chemical Catalysts for Biomass Upgrading


Book Description

A comprehensive reference to the use of innovative catalysts and processes to turn biomass into value-added chemicals Chemical Catalysts for Biomass Upgrading offers detailed descriptions of catalysts and catalytic processes employed in the synthesis of chemicals and fuels from the most abundant and important biomass types. The contributors?noted experts on the topic?focus on the application of catalysts to the pyrolysis of whole biomass and to the upgrading of bio-oils. The authors discuss catalytic approaches to the processing of biomass-derived oxygenates, as exemplified by sugars, via reactions such as reforming, hydrogenation, oxidation, and condensation reactions. Additionally, the book provides an overview of catalysts for lignin valorization via oxidative and reductive methods and considers the conversion of fats and oils to fuels and terminal olefins by means of esterification/transesterification, hydrodeoxygenation, and decarboxylation/decarbonylation processes. The authors also provide an overview of conversion processes based on terpenes and chitin, two emerging feedstocks with a rich chemistry, and summarize some of the emerging trends in the field. This important book: -Provides a comprehensive review of innovative catalysts, catalytic processes, and catalyst design -Offers a guide to one of the most promising ways to find useful alternatives for fossil fuel resources -Includes information on the most abundant and important types of biomass feedstocks -Examines fields such as catalytic cracking, pyrolysis, depolymerization, and many more Written for catalytic chemists, process engineers, environmental chemists, bioengineers, organic chemists, and polymer chemists, Chemical Catalysts for Biomass Upgrading presents deep insights on the most important aspects of biomass upgrading and their various types.







Catalytic Hydroprocessing of Petroleum and Distillates


Book Description

This work is based on the proceedings of the American Institute of Chemical Engineers' Spring National Meeting in Houston, Texas, March 28 to April 1, 1993. It details various facets of residue upgrading and distillate hydrotreating, stressing the importance of selective catalysts in aromatics reduction. New aromatics saturation processes for the production of very low-aromatic distillates are introduced.