Cathodoluminescence and Photoluminescence


Book Description

Written by a senior industry expert with nearly 40 years of hands-on experience, Cathodoluminescence and Photoluminescence: Theories and Practical Applications presents a thorough review of advances, challenges, and recommendations for improving photoluminescent (PL) and cathodoluminescent (CL) phosphor display devices in terms of energy efficiency, image quality, color fidelity, operational lifetime, and production cost. This book traces the development of cathode ray tubes (CRTs), PL and CL phosphor screens, and fluorescent lamps (FL) into modern phosphor display devices. The author relates luminescence phenomena and color to chemical composition, excitation mechanisms, energy conversion efficiencies, and bulk properties of phosphor particles. He also addresses image quality issues such as flickering, smearing, whitening, and contrast. Subsequent chapters focus on powder deposition techniques and the production of phosphor powders themselves. The text describes the necessary raw materials, flux materials, and growth conditions for producing ZnS powders. It provides a quantitative analysis on optimal processes and parameters for ensuring higher quality color and screen resolution. Offering a detailed guide for next-generation scientists and engineers in the field, Cathodoluminescence and Photoluminescence describes current technologies and promising developments for producing higher quality, energy-efficient, and long-lasting phosphor CR and flat CL screen displays.




Cathodoluminescence Microscopy of Inorganic Solids


Book Description

Microcharacterization of materials is a rapidly advancing field. Among the many electron and ion probe techniques, the cathodoluminescence mode of an electron probe instrument has reached a certain maturity, which is reflected by an increas ing number of publications in this field. The rapid rate of progress in applications of cathodoluminescence techniques in characterizing inorganic solids has been especially noticeable in recent years. The main purpose of the book is to outline the applications of cath odoluminescence techniques in the assessment of optical and electronic proper ties of inorganic solids, such as semiconductors, phosphors, ceramics, and min erals. The assessment provides, for example, information on impurity levels derived from cathodoluminescence spectroscopy, analysis of dopant concentra tions at a level that, in some cases, is several orders of magnitude lower than that attainable by x-ray microanalysis, the mapping of defects, and the determination of carrier lifetimes and the charge carrier capture cross sections of impurities. In order to make the book self-contained, some basic concepts of solid-state phys ics, as well as various cathodoluminescence techniques and the processes leading to luminescence phenomena in inorganic solids, are also described. We hope that this book will be useful to both scientists and graduate students interested in microcharacterization of inorganic solids. This book, however, was not intended as a definitive account of cathodoluminescence analysis of in organic solids. In considering the results presented here, readers should re member that many materials have properties that vary widely as a function of preparation conditions.







Cathodoluminescence


Book Description

Cathodoluminescence is the basic phenomenon behind the function of cathode ray tubes. Thus a knowledge of its fundamentals and applications is a prerequisite for the production of CRTs. This comprehensive treatment of cathodoluminescence covers all aspects scientists and engineers need for their work in the field. They include penetration of electrons into crystals, excitation of activator ions by incident radiation, motion of mobile carriers in crystals, optimization of cathodoluminescence phosphors and application of phosphors to picture tubes.




Luminescence of Solids


Book Description

Luminescence of Solids gathers together much of the latest work on luminescent inorganic materials and new physical phenomena. The volume includes chapters covering -- the achievements that have led to the establishment of the fundamental laws of luminescence -- light sources, light-dispersing elements, detectors, and other experimental techniques -- models and mechanisms -- materials preparation, and -- future trends. This international collection of cutting-edge luminescence research is complemented by over 170 illustrations that bring to life the text's many vital concepts.




Cathodoluminescence in Geosciences


Book Description

An up-to-date overview of cathodoluminescence microscopy and spectroscopy in the field of geosciences, including new important data on cathodoluminescence spectroscopy, physical parameters and systematic spectral analysis of doped minerals. Each chapter, written by a well-known specialist, covers classic and new fields of application such as carbonate diagenesis, silicates, brittle deformation in sandstones, gemstone recognition, biomineralization, economic geology or geochronology. Useful to all scientists, graduates and professional engineers throughout the geosciences community.




Luminescent Materials and Applications


Book Description

Luminescence, for example, as fluorescence, bioluminescence, and phosphorescence, can result from chemical changes, electrical energy, subatomic motions, reactions in crystals, or stimulation of an atomic system. This subject continues to have a major technological role for humankind in the form of applications such as organic and inorganic light emitters for flat panel and flexible displays such as plasma displays, LCD displays, and OLED displays. Luminescent Materials and Applications describes a wide range of materials and applications that are of current interest including organic light emitting materials and devices, inorganic light emitting diode materials and devices, down-conversion materials, nanomaterials, and powder and thin-film electroluminescent phosphor materials and devices. In addition, both the physics and the materials aspects of the field of solid-state luminescence are presented. Thus, the book may be used as a reference to gain an understanding of various types and mechanisms of luminescence and of the implementation of luminescence into practical devices. The book is aimed at postgraduate students (physicists, electrical engineers, chemical engineers, materials scientists, and engineers) and researchers in industry, for example, at lighting and display companies and academia involved in studying conduction in solids and electronic materials. It will also provide an excellent starting point for all scientists interested in luminescent materials. Finally it is hoped that this book will not only educate, but also stimulate further progress in this rapidly evolving field.




Lanthanide Luminescence


Book Description

Lanthanides have fascinated scientists for more than two centuries now, and since efficient separation techniques were established roughly 50 years ago, they have increasingly found their way into industrial exploitation and our everyday lives. Numerous applications are based on their unique luminescent properties, which are highlighted in this volume. It presents established knowledge about the photophysical basics, relevant lanthanide probes or materials, and describes instrumentation-related aspects including chemical and physical sensors. The uses of lanthanides in bioanalysis and medicine are outlined, such as assays for in vitro diagnostics and research. All chapters were compiled by renowned scientists with a broad audience in mind, providing both beginners in the field and advanced researchers with comprehensive information on on the given subject.




5th International Conference on Nanotechnologies and Biomedical Engineering


Book Description

This book gathers the proceedings of the 5th International Conference on Nanotechnologies and Biomedical Engineering, held online on November 3–5, 2021, from Chisinau, Republic of Moldova. It covers fundamental and applied research at the interface between nanotechnologies and biomedical engineering. Chapters report on cutting-edge bio-micro/nanotechnologies, devices for biomedical applications, and advances in bio-imaging and biomedical signal processing, innovative nano-biomaterials as well as advances in e-health, medical robotics, and related topics. With a good balance of theory and practice, the book offers a timely snapshot of multidisciplinary research at the interface between physics, chemistry, biomedicine, materials science, and engineering.




Materials Characterization Using Nondestructive Evaluation (NDE) Methods


Book Description

Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials