Homeostatic Control of Brain Function


Book Description

Homeostatic Control of Brain Function offers a broad view of brain health and diverse perspectives for potential treatments, targeting key areas such as mitochondria, the immune system, epigenetic changes, and regulatory molecules such as ions, neuropeptides, and neuromodulators. Loss of homeostasis becomes expressed as a diverse array of neurological disorders. Each disorder has multiple comorbidities - with some crossing over several conditions - and often disease-specific treatments remain elusive. When current pharmacological therapies result in ineffective and inadequate outcomes, therapies to restore and maintain homeostatic functions can help improve brain health, no matter the diagnosis. Employing homeostatic therapies may lead to future cures or treatments that address multiple comorbidities. In an age where brain diseases such as Alzheimer's or Parkinson's are ever present, the incorporation of homeostatic techniques could successfully promote better overall brain health. Key Features include · A focus on the homeostatic controls that significantly depend on the way one lives, eats, and drinks. · Highlights from emerging research in non-pharmaceutical therapies including botanical medications, meditation, diet, and exercise. · Incorporation of homeostatic therapies into existing basic and clinical research paradigms. · Extensive scientific basic and clinical research ranging from molecules to disorders. · Emerging practical information for improving homeostasis. · Examples of homeostatic therapies in preventing and delaying dysfunction. Both editors, Detlev Boison and Susan Masino, bring their unique expertise in homeostatic research to the overall scope of this work. This book is accessible to all with an interest in brain health; scientist, clinician, student, and lay reader alike.




Cerebellum and Cerebrum in Homeostatic Control and Cognition


Book Description

Cerebellum and Cerebrum in Homeostatic Control and Cognition presents a ground-breaking hybrid-brain psychology, proposing that the cerebellum and cerebrum operate in a complementary manner as equal cognitive partners in learning based control. The book synthesises contemporary neuroscience and psychology in terms of their common underlying control principle, homeostasis. Drawing on research and theory from neuroscience, psychology, AI and robotics, it provides a hybrid control systems interpretation of consciousness and self; unconscious mind; REM dream sleep; emotion; self-monitoring and self-control; memory, infantile amnesia; and, cognitive development. This is used to investigate different elements of cerebellum-cerebrum offline interaction; including attention and working memory, and explores cerebellar and cerebral contributions to various aspects of a number of disorders; including ADHD, ASD and schizophrenia. Presenting original ideas around neuropsychological architecture, the book will be of great interest to academics, researchers, and post-graduate students in the fields of neuropsychology, cognitive psychology, neuroscience and clinical psychology.




The Cerebellum and Cognition


Book Description

The Cerebellum and Cognition pulls together a preeminent group of authors. The cerebellum has been previously considered as a highly complex structure involved only with motor control. The cerebellum is essential to nonmotor functions, and recent research has revealed new medically important roles of the cerebellum and cognitive processes. - Selected for inclusion in Doody's Core Titles 2013, an essential collection development tool for health sciences libraries - Comprehensive coverage of cerebellum in motor control and cognition - New developments regarding the cerebellum and motor systems - Therapeutic implications of cerebellar contributions to cognition - Preeminent group of contributors




The Aging Mind


Book Description

Possible new breakthroughs in understanding the aging mind that can be used to benefit older people are now emerging from research. This volume identifies the key scientific advances and the opportunities they bring. For example, science has learned that among older adults who do not suffer from Alzheimer's disease or other dementias, cognitive decline may depend less on loss of brain cells than on changes in the health of neurons and neural networks. Research on the processes that maintain neural health shows promise of revealing new ways to promote cognitive functioning in older people. Research is also showing how cognitive functioning depends on the conjunction of biology and culture. The ways older people adapt to changes in their nervous systems, and perhaps the changes themselves, are shaped by past life experiences, present living situations, changing motives, cultural expectations, and emerging technology, as well as by their physical health status and sensory-motor capabilities. Improved understanding of how physical and contextual factors interact can help explain why some cognitive functions are impaired in aging while others are spared and why cognitive capability is impaired in some older adults and spared in others. On the basis of these exciting findings, the report makes specific recommends that the U.S. government support three major new initiatives as the next steps for research.




Magnesium in the Central Nervous System


Book Description

The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.




Subcortical Structures and Cognition


Book Description

Clinical psychologists and neuropsychologists are traditionally taught that cognition is mediated by the cortex and that subcortical brain regions mediate the coordination of movement. However, this argument can easily be challenged based upon the anatomic organization of the brain. The relationship between the prefrontal cortex/frontal lobes and basal ganglia is characterized by loops from these anterior brain regions to the striatum, the globus pallidus, and the thalamus, and then back to the frontal cortex. There is also a cerebrocerebellar system defined by projections from the cerebral cortex to the pontine nuclei, to the cerebellar cortex and deep cerebellar nuclei, to the red nucleus and then back to thalamus and cerebral cortex, including all regions of the frontal lobes. Therefore, both the cortical-striatal and cortical-cerebellar projections are anatomically defined as re-entrant systems that are obviously in a position to influence not only motor behavior, but also cognition and affect. This represents overwhelming evidence based upon neuroanatomy alone that subcortical regions play a role in cognition. The first half of this book defines the functional neuroanatomy of cortical-subcortical circuitries and establishes that since structure is related to function, what the basal ganglia and cerebellum do for movement they also do for cognition and emotion. The second half of the book examines neuropsychological assessment. Patients with lesions restricted to the cerebellum and/or basal ganglia have been described as exhibiting a variety of cognitive deficits on neuropsychological tests. Numerous investigations have demonstrated that higher-level cognitive functions such as attention, executive functioning, language, visuospatial processing, and learning and memory are affected by subcortical pathologies. There is also considerable evidence that the basal ganglia and cerebellum play a critical role in the regulation of affect and emotion. These brain regions are an integral part of the brain’s executive system. The ability to apply new methodologies clinically is essential in the evaluation of disorders with subcortical pathology, including various developmental disorders (broadly defined to include learning disorders and certain psychiatric conditions), for the purpose of gaining greater understanding of these conditions and developing appropriate methodologies for treatment. The book is organized around three sources of evidence: neuroanatomical connections; patients with various disease processes; experimental studies, including various imaging techniques. These three sources of data present compelling evidence that the basal ganglia and cerebellum are involved in cognition, affect, and emotion. The question is no longer if these subcortical regions are involved in these processes, but instead, how they are involved. The book is also organized around two basic concepts: (1) the functional neuroanatomy of the basal ganglia and the cerebellum; and (2) how this relates to behavior and neuropsychological testing. Cognitive neuroscience is entering a new era as we recognize the roles of subcortical structures in the modulation of cognition. The fields of neuropsychology, cognitive psychology, neuropsychiatry, and neurology are all developing in the direction of understanding the roles of subcortical structures in behavior. This book is informative while defining the need and direction for new paradigms and methodologies for neuropsychological assessment.




Active Inference


Book Description

The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning.




Anatomy and Physiology


Book Description




Neurobiology of Body Fluid Homeostasis


Book Description

A timely symposium entitled Body-Fluid Homeostasis: Transduction and Integration was held at Araraquara, São Paulo, Brazil in 2011. This meeting was convened as an official satellite of a joint gathering of the International Society for Autonomic Neuroscience (ISAN) and the American Autonomic Society (AAS) held in Buzios, Rio de Janeiro. Broad international participation at this event generated stimulating discussion among the invited speakers, leading to the publication of Neurobiology of Body Fluid Homeostasis: Transduction and Integration. Drawn from the proceedings and filled with rich examples of integrative neurobiology and regulatory physiology, this volume: Provides updated research using human and animal models for the control of bodily fluids, thirst, and salt appetite Explores neural and endocrine control of body fluid balance, arterial pressure, thermoregulation, and ingestive behavior Discusses recent developments in molecular genetics, cell biology, and behavioral plasticity Reviews key aspects of brain serotonin and steroid and peptide control of fluid consumption and arterial pressure The book highlights research conducted by leading scientists on signal transduction and sensory afferent mechanisms, molecular genetics, perinatal and adult long-term influences on regulation, central neural integrative circuitry, and autonomic/neuroendocrine effector systems. The findings discussed by the learned contributors are relevant for a basic understanding of disorders such as heat injury, hypertension, and excess salt intake. A unique reference on the neurobiology of body fluid homeostasis, this volume is certain to fuel additional research and stimulate further debate on the topic.




Beyond Evolutionary Psychology


Book Description

This book presents a compelling unifying theory of which aspects of the brain are innate and which are not.