Some Aspects of Ring Theory


Book Description

S. Amitsur: Associative rings with identities.- I.N. Herstein: Topics in ring theory.- N. Jacobson: Representation theory of Jordan algebras.- I. Kaplansky: The theory of homological dimension.- D. Buchsbaum: Complexes in local ring theory.- P.H. Cohn: Two topics in ring theory.- A.W. Goldie: Non-commutative localisation.




Rings with Involution


Book Description




Polynomial Identities in Ring Theory


Book Description

Polynomial Identities in Ring Theory




Topics in Ring Theory


Book Description




Radical Theory of Rings


Book Description

Radical Theory of Rings distills the most noteworthy present-day theoretical topics, gives a unified account of the classical structure theorems for rings, and deepens understanding of key aspects of ring theory via ring and radical constructions. Assimilating radical theory's evolution in the decades since the last major work on rings and radicals was published, the authors deal with some distinctive features of the radical theory of nonassociative rings, associative rings with involution, and near-rings. Written in clear algebraic terms by globally acknowledged authorities, the presentation includes more than 500 landmark and up-to-date references providing direction for further research.




Quaternion Algebras


Book Description

This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.




Research in Progress


Book Description




Baer *-Rings


Book Description

A systematic exposition of Baer *-Rings, with emphasis on the ring-theoretic and lattice-theoretic foundations of von Neumann algebras. Equivalence of projections, decompositio into types; connections with AW*-algebras, *-regular rings, continuous geometries. Special topics include the theory of finite Baer *-rings (dimension theory, reduction theory, embedding in *-regular rings) and matrix rings over Baer *-rings. Written to be used as a textbook as well as a reference, the book includes more than 400 exercises, accompanied by notes, hints, and references to the literature. Errata and comments from the author have been added at the end of the present reprint (2nd printing 2010).