Characterization of Biopharmaceuticals Focusing on Antibody Therapeutics


Book Description

Biopharmaceuticals are highly complex molecules and also require high quality for safety and efficacy in human uses. For well-characterized products, the desired level of quality should be monitored and controlled during the manufacturing processes. A series of workflow for analytical characterization should be applied for product quality throughout those processes. In this chapter, several analytical techniques are introduced for assessing characteristics of biopharmaceuticals focusing on monoclonal antibodies (mAbs). Analytical characterization for primary structure was performed by mass spectrometry (MS), and assessment of post-translational modifications (PTMs) was done by conventional approaches. The analytical assessments were also done by multi-attribute method (MAM) approach using mass spectrometer (MS), and the performance of MAM was compared to conventional approaches.




Approaches to the Purification, Analysis and Characterization of Antibody-Based Therapeutics


Book Description

Approaches to the Purification, Analysis and Characterization of Antibody-Based Therapeutics provides the interested and informed reader with an overview of current approaches, strategies and considerations relating to the purification, analytics and characterization of therapeutic antibodies and related molecules. While there are obviously other books published in and around this subject area, they seem to be either older (c.a. year 2000 publication date) or are more limited in scope. The book will include an extensive bibliography of the published literature in the respective areas covered. It is not, however, intended to be a how-to methods book. Covers the vital new area of R&D on therapeutic antibodies Written by leading scientists and researchers Up-to-date coverage and includes a detailed bibliography




Monoclonal Antibodies


Book Description

Monoclonal antibodies (mAbs) are naturally occurring complex biomolecules. New engineering methods have turned mAbs into a leading therapeutic modality for addressing immunotherapeutic challenges and led to the rise of mAbs as the dominant class of protein therapeutics. mAbs have already demonstrated a great potential in developing safe and reliable treatments for complex diseases and creating more affordable healthcare alternatives. Developing mAbs into well-characterized antibody therapeutics that meet regulatory expectations, however, is extremely challenging. Obstacles to overcome include the determination and development of physiochemical characteristics such as aggregation, fragmentation, charge variants, identity, carbohydrate structure, and higher-order structure (HOS). This book dives deep into mAbs structure and the array of physiochemical testing and characterization methods that need to be developed and validated to establish a mAb as a therapeutic molecule. The main focus of this book is on physiochemical aspects, including the importance of establishing quality attributes such as glycosylation, primary sequence, purity, and HOS and elucidating the structure of new antibody formats by mass spectrometry. Each of the aforementioned quality attributes has been discussed in detail; this will help scientists in researching and developing biopharmaceuticals and biosimilars to find practical solutions to physicochemical testing and characterization. Describes the spectrum of analytical tests and characterization methods necessary for developing and releasing mAb batches Details antibody heterogeneity in terms of size, charge, and carbohydrate content Gives special focus to the structural analysis of mAbs, including mass spectrometry analysis Presents the basic structure of mAbs with clarity and rigor Addresses regulatory guidelines - including ICH Q6B - in relation to quality attributes Lays out characterization and development case studies including biosimilars and new antibody formats




Analytical Characterization of Biotherapeutics


Book Description

The definitive guide to the myriad analytical techniques available to scientists involved in biotherapeutics research Analytical Characterization of Biotherapeutics covers all current and emerging analytical tools and techniques used for the characterization of therapeutic proteins and antigen reagents. From basic recombinant antigen and antibody characterization, to complex analyses for increasingly complex molecular designs, the book explores the history of the analysis techniques and offers valuable insights into the most important emerging analytical solutions. In addition, it frames critical questions warranting attention in the design and delivery of a therapeutic protein, exposes analytical challenges that may occur when characterizing these molecules, and presents a number of tested solutions. The first single-volume guide of its kind, Analytical Characterization of Biotherapeutics brings together contributions from scientists at the leading edge of biotherapeutics research and manufacturing. Key topics covered in-depth include the structural characterization of recombinant proteins and antibodies, antibody de novo sequencing, characterization of antibody drug conjugates, characterization of bi-specific or other hybrid molecules, characterization of manufacturing host-cell contaminant proteins, analytical tools for biologics molecular assessment, and more. Each chapter is written by a recognized expert or experts in their field who discuss current and cutting edge approaches to fully characterizing biotherapeutic proteins and antigen reagents Covers the full range of characterization strategies for large molecule based therapeutics Provides an up-to-date account of the latest approaches used for large molecule characterization Chapters cover the background needed to understand the challenges at hand, solutions to characterize these large molecules, and a summary of emerging options for analytical characterization Analytical Characterization of Biotherapeutics is an up-to-date resource for analytical scientists, biologists, and mass spectrometrists involved in the analysis of biomolecules, as well as scientists employed in the pharmaceuticals and biotechnology industries. Graduate students in biology and analytical science, and their instructors will find it to be fascinating and instructive supplementary reading.







Biopharmaceuticals


Book Description

Biopharmaceuticals are derived from biological sources, either live organisms or their active components; nowadays, they are mainly produced by biotechnologies. Biopharmaceuticals are extensively used in the treatment of various diseases such as cardiovascular, metabolic, neurological diseases, cancer, and others for which there are no available therapeutic methods. With the advance of science, biopharmaceuticals have revolutionized the treatment, prevention, and diagnosis of many patients with disabling and life-threatening diseases. Innovative biopharmaceuticals definitely improve the life quality of patients and enhance the effectiveness of the healthcare system. This book encompasses the discovery, production, application, and regulation of biopharmaceuticals to demonstrate their research achievement, prospects, and challenges. We expect the significance of biopharmaceuticals to be revealed and emphasized by this book.




Development of Antibody-Based Therapeutics


Book Description

With a key focus on recent developments and advances in the field, this book provides in-depth coverage of topics fundamental to the development of targeted therapeutics. The expansion of targeted modalities in rapidly evolving therapeutic areas, such as immune-oncology, and developments with respect to combination therapies, novel technologies, and the therapeutic application of antibody-drug conjugates, are presented. Additionally, the book builds upon topics discussed in the first edition (2012) where recent innovations warrant elaboration. This, the second edition of Development of Antibody-Based Therapeutics: Translational Considerations, represents a comprehensive evaluation of progress in the field, which sits alongside the first edition to inform, in detail, professional and academic researchers, as well as graduate students.




Biophysical Characterization of Proteins in Developing Biopharmaceuticals


Book Description

Biophysical Characterization of Proteins in Developing Biopharmaceuticals, Second Edition, presents the latest on the analysis and characterization of the higher-order structure (HOS) or conformation of protein based drugs. Starting from the very basics of protein structure, this book explains the best way to achieve this goal using key methods commonly employed in the biopharmaceutical industry. This book will help today’s industrial scientists plan a career in this industry and successfully implement these biophysical methodologies. This updated edition has been fully revised, with new chapters focusing on the use of chromatography and electrophoresis and the biophysical characterization of very large biopharmaceuticals. In addition, best practices of applying statistical analysis to biophysical characterization data is included, along with practical issues associated with the concept of a biopharmaceutical’s developability and the technical decision-making process needed when dealing with biophysical characterization data. Presents basic protein characterization methods and tools applicable to (bio)pharmaceutical research and development Highlights the capabilities and limitations of each technique Discusses the underlining science of each tool Empowers industrial biophysical chemists by providing a roadmap for applying biophysical tools Outlines the needs for new characterization and analytical tools in the biopharmaceutical industry




Structural Biology in Drug Discovery


Book Description

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins




Mass Spectrometry in Biopharmaceutical Analysis


Book Description

Biopharmaceuticals are a unique class of compounds due to their extreme structural complexity. The current text puts together a variety of the state‐of‐the art approaches that use mass spectrometry to evaluate various aspects of biopharmaceutical products ranging from monitoring stress‐related structural changes to their quantitation in pharmacokinetic studies.