Designing and Building with UHPFRC


Book Description

This book contains the proceedings of the international workshop “Designing and Building with Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC): State of the Art and Development”, organized by AFGC, the French Association for Civil Engineering and French branch of fib, in Marseille (France), November 17-18, 2009. This workshop was focused on the experience of a lot of recent UHPFRC realizations. Through more than 50 papers, this book details the experience of many countries in UHPFRC construction and design, including projects from Japan, Germany, Australia, Austria, USA, Denmark, the Netherlands, Canada... and France. The projects are categorized as novel architectural solutions, new frontiers for bridges, new equipments and structural components, and extending the service life of structures. The last part presents major research results, durability and sustainability aspects, and the updated AFGC Recommendations on UHPFRC.




Ultra-High Performance Concrete UHPC


Book Description

Selected chapters from the German concrete yearbook are now being published in the new English "Beton-Kalender Series" for the benefit of an international audience. Since it was founded in 1906, the Ernst & Sohn "Beton-Kalender" has been supporting developments in reinforced and prestressed concrete. The aim was to publish a yearbook to reflect progress in "ferro-concrete" structures until - as the book's first editor, Fritz von Emperger (1862-1942), expressed it - the "tempestuous development" in this form of construction came to an end. However, the "Beton-Kalender" quickly became the chosen work of reference for civil and structural engineers, and apart from the years 1945-1950 has been published annually ever since. Ultra high performance concrete (UHPC) is a milestone in concrete technology and application. It permits the construction of both more slender and more durable concrete structures with a prolonged service life and thus improved sustainability. This book is a comprehensive overview of UHPC - from the principles behind its production and its mechanical properties to design and detailing aspects. The focus is on the material behaviour of steel fibre-reinforced UHPC. Numerical modelling and detailing of the connections with reinforced concrete elements are featured as well. Numerous examples worldwide - bridges, columns, facades and roofs - are the basis for additional explanations about the benefits of UHPC and how it helps to realise several architectural requirements. The authors are extensively involved in the testing, design, construction and monitoring of UHPC structures. What they provide here is therefore a unique synopsis of the state of the art with a view to practical applications.




Ultra-High Performance Concrete


Book Description

Ultra-high performance concrete (UHPC) is an advanced cement-based composite material with compressive strength of over 120 MPa, high toughness, and superior durability. Since its development in the early 1990s, UHPC has attracted great interest worldwide due to its advantages. This book covers material selection and mixture design methods for developing UHPC, as well as the performance of UHPC, including fresh and hardened properties, setting and hardening, dimensional stability, static and dynamic properties, durability, long-term properties, and self-healing properties. A range of potential applications and case studies are presented to illustrate how UHPC meets requirements for lightweight, high-rise, large-span, heavy-load bearing, fast-construction, and highly durable structures in civil and construction engineering. Also introduced is a typical new concrete, seawater sea-sand UHPC, which avoids the use of freshwater and river sand in marine construction. The first book to fully cover the design, performance, and applications of UHPC, this is ideal for concrete technologists, designers, contractors, and researchers.




Advanced Concrete Technology


Book Description

Over the past two decades concrete has enjoyed a renewed level of research and testing, resulting in the development of many new types of concrete. Through the use of various additives, production techniques and chemical processes, there is now a great degree of control over the properties of specific concretes for a wide range of applications. New theories, models and testing techniques have also been developed to push the envelope of concrete as a building material. There is no current textbook which brings all of these advancements together in a single volume. This book aims to bridge the gap between the traditional concrete technologies and the emerging state-of-the-art technologies which are gaining wider use.




High-performance Construction Materials


Book Description

This book describes a number of high-performance construction materials, including concrete, steel, fiber-reinforced cement, fiber-reinforced plastics, polymeric materials, geosynthetics, masonry materials and coatings. It discusses the scientific bases for the manufacture and use of these high-performance materials. Testing and application examples are also included, in particular the application of relatively new high-performance construction materials to design practice.Most books dealing with construction materials typically address traditional materials only rather than high-performance materials and, as a consequence, do not satisfy the increasing demands of today''s society. On the other hand, books dealing with materials science are not engineering-oriented, with limited coverage of the application to engineering practice. This book is thus unique in reflecting the great advances made on high-performance construction materials in recent years.This book is appropriate for use as a textbook for courses in engineering materials, structural materials and civil engineering materials at the senior undergraduate and graduate levels. It is also suitable for use by practice engineers, including construction, materials, mechanical and civil engineers.




Fibre Reinforced Concrete: Improvements and Innovations


Book Description

This volume highlights the latest advances, innovations, and applications in the field of fibre reinforced concrete (FRC) and discusses a diverse range of topics concerning FRC: rheology and early-age properties, mechanical properties, codes and standards, long-term properties, durability, analytical and numerical models, quality control, structural and Industrial applications, smart FRC’s, nanotechnologies related to FRC, textile reinforced concrete, structural design and UHPFRC. The contributions present improved traditional and new ideas that will open novel research directions and foster multidisciplinary collaboration between different specialists. Although the symposium was postponed, the book gathers peer-reviewed papers selected in 2020 for the RILEM-fib International Symposium on Fibre Reinforced Concrete (BEFIB).




Compressive Strength of Concrete


Book Description

Concrete made using mineral cements, the raw materials which on earth are practically endless, is known as one of the oldest building materials and during the last decades of the twentieth century has become a dominant building material for general use. At the same time, the requirements of the quality of concrete and its performance properties, in particular compressive strength, durability, economical efficiency, and low negative impact of its manufacture on the environment have not yet been completely met. Bearing these requirements in mind, researchers and engineers worldwide are working on how to satisfy these requirements. This book has been written by researchers and experts in the field and provides the state of the art on recent progress achieved on the properties of concrete, including concrete in which industrial by-products are utilized. The book is dedicated to graduate students, researchers, and practicing engineers in related fields.




Concrete Microstructure


Book Description

Durability of concrete in highway systems is a problem of national concern. In order to better understand the mechanisms which intrinsically control durability in highway concrete, it is necessary to define and understand those factors which impact concrete microstructure which is a consequence of both its formulation and the processes taking place during mixing, placing and curing. This report documents an investigation of those variables which control cement hydration and consequent microstructural development.




Proceedings of the International Conference on Applied Sciences and Engineering (ICASE 2023)


Book Description

This is an open access book. We kindly welcome to all academicians, researchers, scientists, engineers and graduate students in the related fields to submit their original research papers. Applications in engineering science that require expertise in mathematics, physics and chemistry. Its mission is to become a voice of the applied science community, addressing researchers and practitioners in different areas ranging from mathematics, physics, and chemistry to all related braches of the engineering, presenting verifiable computational methods, findings, and solutions. The Conference provided a setting for discussing recent developments in various engineering and applied science topics, including Mathematics, Chemistry, Physics, Computational science, Material science, Environmental Science and Chemical engineering. The submitted conference papers will be subjected to stringent peer review and carefully evaluated based on originality and clarity of exposition. All the accepted papers will be published in the conference proceedings. The conference provides opportunities for the attendants to share new ideas, experiences in Applied Sciences and Engineering and to establish collaboration for the future.




Innovative Bridge Structures Based on Ultra-High Performance Concrete (UHPC)


Book Description

Innovative Bridge Structures Based on Ultra-High Performance Concrete (UHPC): Theory, Experiments and Applications introduces more than a dozen innovative bridge structures and engineering applications developed by the author's team based on UHPC. As the new bridge structure developed by UHPC can make outstanding contributions to the realization of the "carbon peaking and carbon neutrality goals" and "sustainable development," and since recent studies have shown that the application of UHPC is expected to greatly reduce the amount of materials and carbon emissions and prolong the life of the structure, this book is an ideal update on the topic. For example, after calculation, when UHPC is applied to the arch bridge with compression as the main stress characteristic, compared with the steel arch bridge, the dead weight of the UHPC arch bridge is basically the same, and the cost and carbon emission are only 34% and 20% of the latter. Ultra-high performance concrete (UHPC) as a new generation of civil structural materials has the characteristics of high strength, high toughness and high durability. Through the collaborative innovation of new materials and new structures, the application of UHPC in bridge engineering is expected to achieve the goal of economical, environmentally-friendly, durable and high performance of the main structure. - Teachers readers about the new structures and technologies in bridge engineering developed by the author's team based on UHPC - Provides relevant experimental studies and the mechanical properties of different UHPC structures - Helps users understand the design method and calculation theory of UHPC bridge structures - Covers the characteristics and advantages of new UHPC structures and technologies applied to engineering