Characterizing Multiparticle Entanglement Using the Schmidt Decomposition of Operators


Book Description

Characterizing entanglement is an important issue in quantum information, as it is considered to be a resource for many applications such as quantum key distribution or quantum metrology. One useful tool to detect and quantify entanglement are witness operators. A standard way to construct them is based on the fidelity of pure states and mathematically relies on the Schmidt decomposition of vectors. In this book a method to build entanglement witnesses using the Schmidt decomposition of operators is presented. One can show that these are strictly stronger than the fidelity witnesses. Moreover, the concept can be generalized easily to the multipartite case, and one may use it to quantify the dimensionality of entanglement. Finally, this scheme will be used to provide two algorithms that can be combined to improve given witnesses for multiparticle entanglement.




Introductory Quantum Optics


Book Description

Publisher Description







Characterizing Entanglement and Quantum Correlations Constrained by Symmetry


Book Description

This thesis focuses on the study and characterization of entanglement and nonlocal correlations constrained under symmetries. It includes original results as well as detailed methods and explanations for a number of different threads of research: positive partial transpose (PPT) entanglement in the symmetric states; a novel, experimentally friendly method to detect nonlocal correlations in many-body systems; the non-equivalence between entanglement and nonlocality; and elemental monogamies of correlations. Entanglement and nonlocal correlations constitute two fundamental resources for quantum information processing, as they allow novel tasks that are otherwise impossible in a classical scenario. However, their elusive characterization is still a central problem in quantum information theory. The main reason why such a fundamental issue remains a formidable challenge lies in the exponential growth in complexity of the Hilbert space as well as the space of multipartite correlations. Physical systems of interest, on the other hand, display symmetries that can be exploited to reduce this complexity, opening the possibility that some of these questions become tractable for such systems.




Quantum Information Theory


Book Description

A self-contained, graduate-level textbook that develops from scratch classical results as well as advances of the past decade.




Mathematical Reviews


Book Description




The Physics of Quantum Information


Book Description

Leading experts from "The Physics of Quantum Information" network, initiated by the European Commission, bring together the most recent results from this emerging area of quantum technology. Written in a consistent style as a research monograph, the book introduces quantum cryptography, quantum teleportation, and quantum computation, considering both theory and newest experiments. Both scientists working in the field and advanced students will find a rich source of information on this exciting new area.




Mathematical Methods Of Theoretical Physics


Book Description

'This book could serve either as a good reference to remind students about what they have seen in their completed courses or as a starting point to show what needs more investigation. Svozil (Vienna Univ. of Technology) offers a very thorough text that leaves no mathematical area out, but it is best described as giving a synopsis of each application and how it relates to other areas … The text is organized well and provides a good reference list. Summing Up: Recommended. Upper-division undergraduates and graduate students.'CHOICEThis book contains very explicit proofs and demonstrations through examples for a comprehensive introduction to the mathematical methods of theoretical physics. It also combines and unifies many expositions of this subject, suitable for readers with interest in experimental and applied physics.




Quantum Theory, Groups and Representations


Book Description

This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.




Quantum Mechanics


Book Description

Although there are many textbooks that deal with the formal apparatus of quantum mechanics (QM) and its application to standard problems, none take into account the developments in the foundations of the subject which have taken place in the last few decades. There are specialized treatises on various aspects of the foundations of QM, but none that integrate those topics with the standard material. This book aims to remove that unfortunate dichotomy, which has divorced the practical aspects of the subject from the interpretation and broader implications of the theory.In this edition a new chapter on quantum information is added. As the topic is still in a state of rapid development, a comprehensive treatment is not feasible. The emphasis is on the fundamental principles and some key applications, including quantum cryptography, teleportation of states, and quantum computing. The impact of quantum information theory on the foundations of quantum mechanics is discussed. In addition, there are minor revisions to several chapters.The book is intended primarily as a graduate level textbook, but it will also be of interest to physicists and philosophers who study the foundations of QM. Parts of it can be used by senior undergraduates too.