Wearable Physical, Chemical and Biological Sensors


Book Description

Wearable Physical, Chemical and Biological Sensors introduces readers of all backgrounds—chemistry, electronics, photonics, biology, microfluidics, materials, and more—to the fundamental principles needed to develop wearable sensors for a host of different applications. The capability to continuously monitor organ-related biomarkers, environmental exposure, movement disorders, and other health conditions using miniaturized devices that operate in real time provides numerous benefits, such as avoiding or delaying the onset of disease, saving resources allocated to public health, and making better decisions on medical diagnostics or treatment. Worn like glasses, masks, wristwatches, fitness bands, tattoo-like devices, or patches, wearables are being boosted by the Internet of Things in combination with smart mobile devices. Besides, wearables for smart agriculture are also covered. Written by experts in their respective fields, Wearable Physical, Chemical and Biological Sensors provides insights on how to design, fabricate, and operate these sensors. - Provides a holistic view of the field, covering physical, chemical, and biosensing approaches along with the advantages of their various functionalities - Covers all necessary elements for developing wearable sensors, including materials, biorecognition elements, transductions systems, signal amplification strategies, and system design considerations - Each chapter includes examples, summaries, and references for further reading




Chemical and Biological Sensors for Environmental Monitoring


Book Description

This volume describes the most recent advances in the design, research, development, and application of environmental chemical sensors and biosensors. Topics encompass the rational assembly of dynamic macromolecules, biocomponent stability, DNA based biosensors, molecular beacons, electronic nose, multianalyte-transducers, sensor systems and others as tools for environmental monitoring. It provides perspective on how recent works in chemical and biological sensors are meeting the challenges of environmental monitoring through enhanced specificity, fast response times, and the ability to determine multiple analytes with little or no need for sample preparation steps in complex samples.




Fundamentals and Applications of Chemical Sensors


Book Description

Presents the first comprehensive collection of articles on the fundamentals and applications of a wide variety of chemical sensors. Discusses a range of topics from the development of new sensor concepts to improvement in sensors that have been mass produced for several years. Specific types of sensors discussed include oxygen, electrochemical, microbial, drug, and glucose sensors.




Surface Plasmon Resonance Based Sensors


Book Description

This is a comprehensive treatment of the field of SPR sensors, in three parts. Part I introduces principles of surface plasmon resonance bio-sensors, electromagnetic theory of surface plasmons, theory of SPR sensors and molecular interactions at sensor surfaces. Part II examines the development of SPR sensor instrumentation and functionalization methods. Part III reviews applications of SPR biosensors in the study of molecules, and in environmental monitoring, food safety and medical diagnostics.




Expanding the Vision of Sensor Materials


Book Description

Advances in materials science and engineering have paved the way for the development of new and more capable sensors. Drawing upon case studies from manufacturing and structural monitoring and involving chemical and long wave-length infrared sensors, this book suggests an approach that frames the relevant technical issues in such a way as to expedite the consideration of new and novel sensor materials. It enables a multidisciplinary approach for identifying opportunities and making realistic assessments of technical risk and could be used to guide relevant research and development in sensor technologies.




Portable Chemical Sensors


Book Description

Biosensors are making a large impact in environmental, food, biomedical, and other applications. In comparison to standard analytical detection methods, such as minimal sample preparation and handling, they offer advantages including real time detection, rapid detection of the analytes of concern, use of non-skilled personnel, and portability. The aim of this book is to focus on research related to the rapid detection of agents and weapons of bioterrorism and provide a comprehensive review of the research topics most pertinent to advancing devices applicable to the rapid real-time detection of toxicants such as microbes, pathogens, toxins, or nerve gases. The ongoing war on terrorism and the rising security concerns are driving the need for newer faster biosensors against bio-warfare agents for both military and civil defence applications. The volume brings together contributions from the most eminent international researchers in the field, covering various aspects of work not so far published in any scientific journal and often going beyond the “state of art “ . Readers of these review articles will learn new technological schemes that can lead to the construction of devices that will minimize the risk of bio-terrorism.




Electrochemical Sensors, Biosensors and their Biomedical Applications


Book Description

This book broadly reviews the modem techniques and significant applications of chemical sensors and biosensors. Chapters are written by experts in the field – including Professor Joseph Wang, the most cited scientist in the world and renowned expert on sensor science who is also co-editor. Each chapter provides technical details beyond the level found in typical journal articles, and explores the application of chemical sensors and biosensors to a significant problem in biomedical science, also providing a prospectus for the future.This book compiles the expert knowledge of many specialists in the construction and use of chemical sensors and biosensors including nitric oxide sensors, glucose sensors, DNA sensors, hydrogen sulfide sensors, oxygen sensors, superoxide sensors, immuno sensors, lab on chip, implatable microsensors, et al. Emphasis is laid on practical problems, ranging from chemical application to biomedical monitoring and from in vitro to in vivo, from single cell to animal to human measurement. This provides the unique opportunity of exchanging and combining the expertise of otherwise apparently unrelated disciplines of chemistry, biological engineering, and electronic engineering, medical, physiological. - Provides user-oriented guidelines for the proper choice and application of new chemical sensors and biosensors - Details new methodological advancements related to and correlated with the measurement of interested species in biomedical samples - Contains many case studies to illustrate the range of application and importance of the chemical sensors and biosensors




Biosensors in Environmental Monitoring


Book Description

During recent years both research activity and the number of reports on biosensor systems applied to environmental analysis have increased significantly. Compounds present in the environment have increasingly been shown to have effects on biological systems such as cells, enzymes, binding proteins, and DNA. In order to deal with the increasing demand for information about possible pollution of the environment there is need for improvements to analytical methods. Thus, biochemistry-based analytical methods should offer the possibility of monitoring these effects. This text provides an overview of existing biosensor principles, commercially available instruments, and related biochemical assays which have been developed and applied to environmental monitoring. Providing the reader with detailed information on methodology and a description of the practical application of selected sensors, this text also includes reports on established chemical methods for comparison. This volume presents fundamental principles together with examples of applications and discussion of drawbacks, and future developments. Of interest to all in the field of environmental analysis and biosensor technology, this text provides a comprehensive treatise on the latest research and developments in the field.




Smart Sensors for Environmental and Medical Applications


Book Description

Provides an introduction to the topic of smart chemical sensors, along with an overview of the state of the art based on potential applications This book presents a comprehensive overview of chemical sensors, ranging from the choice of material to sensor validation, modeling, simulation, and manufacturing. It discusses the process of data collection by intelligent techniques such as deep learning, multivariate analysis, and others. It also incorporates different types of smart chemical sensors and discusses each under a common set of sub-sections so that readers can fully understand the advantages and disadvantages of the relevant transducers—depending on the design, transduction mode, and final applications. Smart Sensors for Environmental and Medical Applications covers all major aspects of the field of smart chemical sensors, including working principle and related theory, sensor materials, classification of respective transducer type, relevant fabrication processes, methods for data analysis, and suitable applications. Chapters address field effect transistors technologies for biological and chemical sensors, mammalian cell–based electrochemical sensors for label-free monitoring of analytes, electronic tongues, chemical sensors based on metal oxides, metal oxide (MOX) gas sensor electronic interfaces, and more. Addressing the limitations and challenges in obtaining state-of-the-art smart biochemical sensors, this book: Balances the fundamentals of sensor design, fabrication, characterization, and analysis with advanced methods Categorizes sensors into sub-types and describes their working, focusing on prominent applications Describes instrumentation and IoT networking methods of chemical transducers that can be used for inexpensive, accurate detection in commercialized smart chemical sensors Covers monitoring of food spoilage using polydiacetylene- and liposome-based sensors; smart and intelligent E-nose for sensitive and selective chemical sensing applications; odor sensing system; and microwave chemical sensors Smart Sensors for Environmental and Medical Applications is an important book for senior-level undergraduate and graduate students learning about this high-performance technology and its many applications. It will also inform practitioners and researchers involved in the creation and use of smart sensors.




Chemical Sensors and Biosensors


Book Description

Key features include: Self-assessment questions and exercises Chapters start with essential principles, then go on to address more advanced topics More than 1300 references to direct the reader to key literature and further reading Highly illustrated with 450 figures, including chemical structures and reactions, functioning principles, constructive details and response characteristics Chemical sensors are self-contained analytical devices that provide real-time information on chemical composition. A chemical sensor integrates two distinct functions: recognition and transduction. Such devices are widely used for a variety of applications, including clinical analysis, environment monitoring and monitoring of industrial processes. This text provides an up-to-date survey of chemical sensor science and technology, with a good balance between classical aspects and contemporary trends. Topics covered include: Structure and properties of recognition materials and reagents, including synthetic, biological and biomimetic materials, microorganisms and whole-cells Physicochemical basis of various transduction methods (electrical, thermal, electrochemical, optical, mechanical and acoustic wave-based) Auxiliary materials used e.g. synthetic and natural polymers, inorganic materials, semiconductors, carbon and metallic materials properties and applications of advanced materials (particularly nanomaterials) in the production of chemical sensors and biosensors Advanced manufacturing methods Sensors obtained by combining particular transduction and recognition methods Mathematical modeling of chemical sensor processes Suitable as a textbook for graduate and final year undergraduate students, and also for researchers in chemistry, biology, physics, physiology, pharmacology and electronic engineering, this bookis valuable to anyone interested in the field of chemical sensors and biosensors.