Chemical And Electrochemical Energy Systems


Book Description

This book addresses the problem of production of energy through chemical energy conversion. It deals with the importance of the need to explore new sources of energy and methods of storage. It includes all forms of chemical energy conversion and deals clearly with the production of energy from petroleum fuel and carbon.




Electrochemical Energy Systems


Book Description

This book is for anyone interested in renewable energy for a sustainable future of mankind. Batteries, fuel cells, capacitors, electrolyzers and solar cells are explained at the molecular level and at the power plant level, in their historical development, in their economical and political impact, and social change. Cases from geophysics and astronomy show that electrochemistry is not confined to the small scale. Examples are shown and exercised.




Carbons for Electrochemical Energy Storage and Conversion Systems


Book Description

As carbons are widely used in energy storage and conversion systems, there is a rapidly growing need for an updated book that describes their physical, chemical, and electrochemical properties. Edited by those responsible for initiating the most progressive conference on Carbon for Energy Storage and Environment Protection (CESEP), this book undoub




Energy Storage


Book Description

ENERGY STORAGE Written and edited by a team of well-known and respected experts in the field, this new volume on energy storage presents the state-of-the-art developments and challenges in the field of renewable energy systems for sustainability and scalability for engineers, researchers, academicians, industry professionals, consultants, and designers. The world’s energy landscape is very complex. Fossil fuels, especially because of hydraulic fracturing, are still a mainstay of global energy production, but renewable energy sources, such as wind, solar, and others, are increasing in importance for global energy sustainability. Experts and non-experts agree that the next game-changer in this area will be energy storage. Energy storage is crucial for continuous operation of power plants and can supplement basic power generation sources over a stand-alone system. It can enhance capacity and leads to greater security, including continuous electricity supply and other applications. A dependable energy storage system not only guarantees that the grid will not go down, but also increases efficacy and efficiency of any energy system. This groundbreaking new volume in this forward-thinking series addresses all of these issues, laying out the latest advances and addressing the most serious current concerns in energy storage. Whether for the veteran engineer or the student, this latest volume in the series, “Advances in Renewable Energy,” is a must-have for any library. This outstanding new volume: Is practically oriented and provides new concepts and designs for energy storage systems, offering greater benefit to the researcher, student, and engineer Offers a comprehensive coverage of energy storage system design, which is also useful for engineers and other professionals who are working in the field of solar energy, biomass, polygeneration, cooling, and process heat Filled with workable examples and designs that are helpful for practical applications, also offers a thorough, novel case study on hybrid energy systems with storage Is useful as a textbook for researchers, students, and faculty for understanding new ideas in this rapidly emerging field




Flow Cells for Electrochemical Energy Systems


Book Description

This book is a state-of-the-art review on recent advances in flow cells for electrochemical energy systems. The book includes an introduction to flow cells, proton exchange membrane fuel cells, photocatalytic fuel cells, organic flow batteries, redox flow batteries, microfluidic flow cells, as well as electrolysis cells for CO2 and nitrogen reduction. The book provides an essential reference for professors, researchers, and policymakers globally in academia, industry, and government.




Energy Sources


Book Description

Energy Sources: Fundamentals of Chemical Conversion Processes and Applications provides the latest information on energy and the environment, the two main concerns of any progressive society that hopes to be sustainable in the future. Continuous efforts have to be exercised in both these areas by any of the developing communities, as concern over energy conversion continues to evolve due to various ecological imbalances, including climate change. This book provides the fundamentals behind all energy conversion processes, identifies future research needs, and discusses the potential application of each process in a clear-and-concise manner. It is a valuable source for both chemists and chemical engineers who are working to improve current and developing future energy sources, and is a single reference that deals with almost all energy sources for these purposes, reviewing the fundamentals, comparing the various processes, and suggesting future research directions. Compiles, in a single source, all energy conversion processes, enabling easy evaluation and selection Explains the science behind each conversion process and facilitates understanding Contains many illustrations, diagrams, and tables, enabling a clear and comprehensible understanding of the pros and cons of the various processes Includes an exhaustive glossary of all terms used in the conversion processes Presents current status and new direction, thus enabling the planning process for future research needs Provides a concise and comprehensive overview of all energy sources




Electrochemical Engineering


Book Description

A Comprehensive Reference for Electrochemical Engineering Theory and Application From chemical and electronics manufacturing, to hybrid vehicles, energy storage, and beyond, electrochemical engineering touches many industries—any many lives—every day. As energy conservation becomes of central importance, so too does the science that helps us reduce consumption, reduce waste, and lessen our impact on the planet. Electrochemical Engineering provides a reference for scientists and engineers working with electrochemical processes, and a rigorous, thorough text for graduate students and upper-division undergraduates. Merging theoretical concepts with widespread application, this book is designed to provide critical knowledge in a real-world context. Beginning with the fundamental principles underpinning the field, the discussion moves into industrial and manufacturing processes that blend central ideas to provide an advanced understanding while explaining observable results. Fully-worked illustrations simplify complex processes, and end-of chapter questions help reinforce essential knowledge. With in-depth coverage of both the practical and theoretical, this book is both a thorough introduction to and a useful reference for the field. Rigorous in depth, yet grounded in relevance, Electrochemical Engineering: Introduces basic principles from the standpoint of practical application Explores the kinetics of electrochemical reactions with discussion on thermodynamics, reaction fundamentals, and transport Covers battery and fuel cell characteristics, mechanisms, and system design Delves into the design and mechanics of hybrid and electric vehicles, including regenerative braking, start-stop hybrids, and fuel cell systems Examines electrodeposition, redox-flow batteries, electrolysis, regenerative fuel cells, semiconductors, and other applications of electrochemical engineering principles Overlapping chemical engineering, chemistry, material science, mechanical engineering, and electrical engineering, electrochemical engineering covers a diverse array of phenomena explained by some of the important scientific discoveries of our time. Electrochemical Engineering provides the critical understanding required to work effectively with these processes as they become increasingly central to global sustainability.




Introduction to Electrochemical Science and Engineering


Book Description

The Second Edition of Introduction to Electrochemical Science and Engineering outlines the basic principles and techniques used in the development of electrochemical engineering related technologies, such as fuel cells, electrolyzers, and flow-batteries. Covering topics from electrolyte solutions to electrochemical energy conversion systems and corrosion, this revised and expanded edition provides new educational material to help readers familiarize themselves with some of today’s most useful electrochemical concepts. The Second Edition includes a new Appendix C with a detailed description of how the most common electrochemical laboratories can be organized, what data should be collected, and how the data should be treated and presented in a report. Video demonstrations for these laboratories are available on YouTube. In addition, the author has added conceptual and numerical exercises to all of the chapters to help with the understanding of the book material and to extend the important aspects of the electrochemical science and engineering. Finally, electrochemical impedance spectroscopy is now used in most electrochemical laboratories, and so a new section briefly describes this technique in Chapter 7. This new edition Ensures readers have a fundamental knowledge of the core concepts of electrochemical science and engineering, such as electrochemical cells, electrolytic conductivity, electrode potential, and current–potential relations related to a variety of electrochemical systems Develops the initial skills needed to understand an electrochemical experiment and successfully evaluate experimental data without visiting a laboratory Promotes an appreciation of the capabilities and applications of key electrochemical techniques Features eight lab descriptions and instructions that can be used to develop the labs by instructors for a university electrochemical engineering class Integrates eight online videos with lab demonstrations to advise instructors and students on how the labs can be carried out Features a solutions manual for adopting instructors The Second Edition is an ideal and unique text for undergraduate engineering and science students and readers in need of introductory-level content. Graduate students and engineers looking for a quick introduction to the subject will benefit from the simple structure of this book. Instructors interested in teaching the subject to undergraduate students can immediately use this book without reservation.




Electrochemical Systems


Book Description

The new edition of the cornerstone text on electrochemistry Spans all the areas of electrochemistry, from the basicsof thermodynamics and electrode kinetics to transport phenomena inelectrolytes, metals, and semiconductors. Newly updated andexpanded, the Third Edition covers important new treatments, ideas,and technologies while also increasing the book's accessibility forreaders in related fields. Rigorous and complete presentation of the fundamentalconcepts In-depth examples applying the concepts to real-life designproblems Homework problems ranging from the reinforcing to the highlythought-provoking Extensive bibliography giving both the historical developmentof the field and references for the practicing electrochemist.




Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems


Book Description

Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems provides unique and comprehensive guidelines on all non-battery energy storage technologies, including their technical and design details, applications, and how to make decisions and purchase them for commercial use. The book covers all short and long-term electric grid storage technologies that utilize heat or mechanical potential energy to store electricity, including their cycles, application, advantages and disadvantages, such as round-trip-efficiency, duration, cost and siting. Also discussed are hybrid technologies that utilize hydrogen as a storage medium aside from battery technology. Readers will gain substantial knowledge on all major mechanical, thermal and hybrid energy storage technologies, their market, operational challenges, benefits, design and application criteria. Provide a state-of-the-art, ongoing R&D review Covers comprehensive energy storage hybridization tactics Features standalone chapters containing technology advances, design and applications