Solids and Surfaces


Book Description

Dieses einzigartige Buch läßt Chemie und Physik im festen Zustand und auf Oberflächen 'zusammentreffen'. In einer lebhaften und anschaulichen Weise bringt es Chemikern die Sprache bei, mit der sie die Elektronenstruktur ausgedehnter Systeme verstehen lernen können. Gleichzeitig zeigt es, wie auch von Seiten der Chemie Modelle über den festen Zustand sowie über Bindungen und Reaktivität von Oberflächen erstellt werden können. Das Buch bedient sich zunächst der Sprache von Kristallorbitalen, Bandstrukturen und Zustandsdichten. Danach stellt es die Werkzeuge bereit, mit denen der Leser weg von den stark delokalisierten Orbitalen des Festkörpers gelangt, darunter der Zerfall von Zustandsdichten und die Population von Kristallorbital-Overlaps. Mit diesen Werkzeugen schafft es der Autor, detaillierte quantenmechanische Berechnungen mit der chemischen Betrachtungsweise mit Grenzorbitalen zu verknüpfen. Die beschriebenen Anwendungen umfassen eine allgemeine Vorstellung der Chemisorption, Bindungsbildung und -zerfall im festen Zustand, Bindungen im Metall, die Elektronenstruktur ausgewählter leitender und supraleitender Verbindungen sowie die für die Deformation ausgedehnter Systeme verantwortlichen Kräfte.




Structure and Bonding in Crystals


Book Description

Structure and Bonding in crystals ...




Chemical Bonds in Solids


Book Description

The present four volumes, published under the collective title of "Chemical Bonds in Solids," are the translation of the two Russian books "Chemical Bonds in Crystals" and "Chemical Bonds in Semiconductors." These contain the papers presented at the Conference on Chemical Bonds held in Minsk between May 28 and June 3, 1967, together with a few other papers (denoted by an asterisk) which have been specially incorporated. Earlier collections (also published by the Nauka i Tekhnika Press of the Belorussian Academy of Sciences) were entitled "Chemical Bonds in Semiconductors and Solids" (1965) and "Chemical Bonds in Semiconductors and Thermody namics" (1966) and are available in English editions from Consultants Bureau, New York (pub lished in 1967 and 1968, respectively). The subject of chemical bonds in crystals, including semiconductors, has recently become highly topical and has attracted the interest of a wide circle of physicists, chemists, and engineers. Until recently, the most successful description of the properties of solids (including semi conductors) has been provided by the band theory, which still dominates the physics of solids. Nevertheless, it is clear that the most universal approach is that based on the general theory of chemical bonds in crystals, in which details of the electron distributions between atoms and of the wave functions appear quite explicitly.




Chemical Bonds in Solids


Book Description

The present four volumes, published under the collective title of "Chemical Bonds in Solids," are the translation of the two Russian books "Chemical Bonds in Crystals" and "Chemical Bonds in Semiconductors." These contain the papers presented at the Conference on Chemical Bonds held in Minsk between May 28 and June 3, 1967, together with a few other papers (denoted by an asterisk) which have been specially incorporated. Earlier collections (also published by the Nauka i Tekhnika Press of the Belorussian Academy of Sciences) were entitled "Chemical Bonds in Semiconductors and Solids" (1965) and "Chemical Bonds in Semiconductors and Thermody namics" (1966) and are available in English editions from Consultants Bureau, New York (pub lished in 1967 and 1968, respectively). The subject of chemical bonds in crystals, including semiconductors, has recently become highly topical and has attracted the interest of a wide circle of physicists, chemists, and engineers. Until recently, the most successful description of the properties of solids (including semi conductors) has been provided by the band theory, which still dominates the physics of solids. Nevertheless, it is clear that the most universal approach is that based on the general theory of chemical bonds in crystals, in which details of the electron distributions between atoms and of the wave functions appear quite expliCitly.




The Chemical Bond


Book Description

This is the perfect complement to "Chemical Bonding - Across the Periodic Table" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemical models and faster computers.




Chemistry 2e


Book Description

Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.




The Chemical Bond in Inorganic Chemistry


Book Description

This book describes the bond valence model, a description of acid-base bonding which is becoming increasingly popular particularly in fields such as materials science and mineralogy where solid state inorganic chemistry is important. Recent improvements in crystal structure determination have allowed the model to become more quantitative. Unlike other models of inorganic chemical bonding, the bond valence model is simple, intuitive, and predictive, and can be used for analysing crystal structures and the conceptual modelling of local as well as extended structures. This is the first book to explore in depth the theoretical basis of the model and to show how it can be applied to synthetic and solution chemistry. It emphasizes the separate roles of the constraints of chemistry and of three-dimensional space by analysing the chemistry of solids. Many applications of the model in physics, materials science, chemistry, mineralogy, soil science, surface science, and molecular biology are reviewed. The final chapter describes how the bond valence model relates to and represents a simplification of other models of inorganic chemical bonding.




Chemistry


Book Description

Steve and Susan Zumdahl's texts focus on helping students build critical thinking skills through the process of becoming independent problem-solvers. They help students learn to "think like a chemists" so they can apply the problem solving process to all aspects of their lives. In CHEMISTRY: AN ATOMS FIRST APPROACH, 1e, International Edition the Zumdahls use a meaningful approach that begins with the atom and proceeds through the concept of molecules, structure, and bonding, to more complex materials and their properties. Because this approach differs from what most students have experienced in high school courses, it encourages them to focus on conceptual learning early in the course, rather than relying on memorization and a "plug and chug" method of problem solving that even the best students can fall back on when confronted with familiar material. The atoms first organization provides an opportunity for students to use the tools of critical thinkers: to ask questions, to apply rules and models and to




Physical Chemistry for the Biosciences


Book Description

This book is ideal for use in a one-semester introductory course in physical chemistry for students of life sciences. The author's aim is to emphasize the understanding of physical concepts rather than focus on precise mathematical development or on actual experimental details. Subsequently, only basic skills of differential and integral calculus are required for understanding the equations. The end-of-chapter problems have both physiochemical and biological applications.




Chemical Bonds in Solids


Book Description