Chemical Chaos


Book Description

Table of contents: 1. Introduction. 2. Mappings. 3. Flows. 1. Two-variable systems. 4. Flows II. Three-vairable systems. 5. Forced systems. 6. Coupled systems. 7.Experimental methods. 8. The Belousov-Zhabotinskii reaction and other solution-phase reactions. 9. Gas-phase reactions. 10. Heterogeneous catalysis. 11. Electrodissolution reactions. 12. Biochemical systems. Index.




Horrible Science: Chemical Chaos


Book Description

Forget fiendish formulas and take a look at bubbling mixtures, poisonous potions, bangs and blasts. Discover what substances lurk in your dinner, the sickening stench of the world's worst stink bomb and which awful acids will eat you alive. Redesigned in a bold, funky new look for the next generation of HORRIBLE SCIENCE fans.




Chaos in Chemistry and Biochemistry


Book Description

True deterministic chaos is characterized by unpredictable, apparently random motion in a dynamical system completely described by a deterministic dynamic law, usually a nonlinear differential equation, with no stochastic component. The inability to predict future behavior of a chaotic system occurs because trajectories evolving from arbitrarily close initial conditions diverge. Chaos is universal as it may arise in any system governed by one of a class of quite common, suitable nonlinear dynamic laws. This book discusses both the experimental observation and theoretical interpretation of chaos in chemical and biochemical systems. Examples are drawn from the Belousov-Zhabotinsky reaction, surface reactions, electrochemical reactions, enzyme reactions, and periodically perturbed oscillating systems.




An Introduction to Nonlinear Chemical Dynamics


Book Description

Just a few decades ago, chemical oscillations were thought to be exotic reactions of only theoretical interest. Now known to govern an array of physical and biological processes, including the regulation of the heart, these oscillations are being studied by a diverse group across the sciences. This book is the first introduction to nonlinear chemical dynamics written specifically for chemists. It covers oscillating reactions, chaos, and chemical pattern formation, and includes numerous practical suggestions on reactor design, data analysis, and computer simulations. Assuming only an undergraduate knowledge of chemistry, the book is an ideal starting point for research in the field. The book begins with a brief history of nonlinear chemical dynamics and a review of the basic mathematics and chemistry. The authors then provide an extensive overview of nonlinear dynamics, starting with the flow reactor and moving on to a detailed discussion of chemical oscillators. Throughout the authors emphasize the chemical mechanistic basis for self-organization. The overview is followed by a series of chapters on more advanced topics, including complex oscillations, biological systems, polymers, interactions between fields and waves, and Turing patterns. Underscoring the hands-on nature of the material, the book concludes with a series of classroom-tested demonstrations and experiments appropriate for an undergraduate laboratory.




Chaos in Atomic Physics


Book Description

This book provides a coherent introduction to the manifestations of chaos in atoms and molecules.




Nonlinear Dynamics and Chaos


Book Description

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.




The Lorenz Equations


Book Description

The equations which we are going to study in these notes were first presented in 1963 by E. N. Lorenz. They define a three-dimensional system of ordinary differential equations that depends on three real positive parameters. As we vary the parameters, we change the behaviour of the flow determined by the equations. For some parameter values, numerically computed solutions of the equations oscillate, apparently forever, in the pseudo-random way we now call "chaotic"; this is the main reason for the immense amount of interest generated by the equations in the eighteen years since Lorenz first presented them. In addition, there are some parameter values for which we see "preturbulence", a phenomenon in which trajectories oscillate chaotically for long periods of time before finally settling down to stable stationary or stable periodic behaviour, others in which we see "intermittent chaos", where trajectories alternate be tween chaotic and apparently stable periodic behaviours, and yet others in which we see "noisy periodicity", where trajectories appear chaotic though they stay very close to a non-stable periodic orbit. Though the Lorenz equations were not much studied in the years be tween 1963 and 1975, the number of man, woman, and computer hours spent on them in recent years - since they came to the general attention of mathematicians and other researchers - must be truly immense.




Order Out of Chaos


Book Description

A pioneering book that shows how the two great themes of classic science, order and chaos, are being reconciled in a new and unexpected synthesis Order Out of Chaos is a sweeping critique of the discordant landscape of modern scientific knowledge. In this landmark book, Nobel Laureate Ilya Prigogine and acclaimed philosopher Isabelle Stengers offer an exciting and accessible account of the philosophical implications of thermodynamics. Prigogine and Stengers bring contradictory philosophies of time and chance into a novel and ambitious synthesis. Since its first publication in France in 1978, this book has sparked debate among physicists, philosophers, literary critics and historians.




Encyclopedia of Chemical Physics and Physical Chemistry


Book Description

The Encyclopedia of Physical Chemistry and Chemical Physics introduces possibly unfamiliar areas, explains important experimental and computational techniques, and describes modern endeavors. The encyclopedia quickly provides the basics, defines the scope of each subdiscipline, and indicates where to go for a more complete and detailed explanation. Particular attention has been paid to symbols and abbreviations to make this a user-friendly encyclopedia. Care has been taken to ensure that the reading level is suitable for the trained chemist or physicist. The encyclopedia is divided in three major sections: FUNDAMENTALS: the mechanics of atoms and molecules and their interactions, the macroscopic and statistical description of systems at equilibrium, and the basic ways of treating reacting systems. The contributions in this section assume a somewhat less sophisticated audience than the two subsequent sections. At least a portion of each article inevitably covers material that might also be found in a modern, undergraduate physical chemistry text. METHODS: the instrumentation and fundamental theory employed in the major spectroscopic techniques, the experimental means for characterizing materials, the instrumentation and basic theory employed in the study of chemical kinetics, and the computational techniques used to predict the static and dynamic properties of materials. APPLICATIONS: specific topics of current interest and intensive research. For the practicing physicist or chemist, this encyclopedia is the place to start when confronted with a new problem or when the techniques of an unfamiliar area might be exploited. For a graduate student in chemistry or physics, the encyclopedia gives a synopsis of the basics and an overview of the range of activities in which physical principles are applied to chemical problems. It will lead any of these groups to the salient points of a new field as rapidly as possible and gives pointers as to where to read about the topic in more detail.




Oscillations, Waves, and Chaos in Chemical Kinetics


Book Description

This series of short texts provides accessible accounts of a range of essential topics in chemistry. Written with the needs of the student in mind, the Oxford Chemistry Primers offer just the right level of detail for undergraduate study, and will be invaluable as a source of material commonly presented in lecture courses yet not adequately covered in existing texts. All the basic principles and facts in a particular area are presented in a clear and straightforward style, to produce concise yet comprehensive accounts of topics covered in both core and specialist courses.