Chemical Kinetics of Homogeneous Systems


Book Description

Chemical kinetics aims to explain the factors governing the change with time of chemical systems. The results enable one to define optimum technico-economic condi tions (such as the choice of batch or continuous processes; of concentration, temperature, and pressure; of whether to use a catalyst) for the preparation of products, so that kinetics is intimately bound up with many processes of chemical industry (production, explosions, combustion, propulsion in air and in space). On another level, kinetic studies are indispensable for understanding reaction mechanisms, which implies a de tailed knowledge of the different chemical intermediates (possibly very transitory) of a chemical reaction. But in practice it is rarely possible to work with microscopic quantities of reagents and, with the exception of crossed molecular beams, all methods give only statistical results concerning a large number of molecules. Because of this restriction, it has not always been possible to establish conclusively a reaction mechanism, even for reactions ap parently simple. Numerous attempts have been made to calculate rate constants from the physical properties of the participating molecules; but the introduction of the 'time' factor into calculations of the distribution of energies of chemical processes makes this very difficult, so that the elucidation of mechanisms still depends almost entirely on experi mental studies. However, several theories have been elab orated which, in giving a more and more precise picture of the reaction process, have proved very fruitful, and have become indispensable in designing experiments.




Chemical Kinetics and Process Dynamics in Aquatic Systems


Book Description

Chemical Kinetics and Process Dynamics in Aquatic Systems is devoted to chemical reactions and biogeochemical processes in aquatic systems. The book provides a thorough analysis of the principles, mathematics, and analytical tools used in chemical, microbial, and reactor kinetics. It also presents a comprehensive, up-to-date description of the kinetics of important chemical processes in aquatic environments. Aquatic photochemistry and correlation methods (e.g., LFERs and QSARs) to predict process rates are covered. Numerous examples are included, and each chapter has a detailed bibliography and problems sets. The book will be an excellent text/reference for professionals and students in such fields as aquatic chemistry, limnology, aqueous geochemistry, microbial ecology, marine science, environmental and water resources engineering, and geochemistry.




An Introduction to Chemical Kinetics


Book Description

This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental results and how to calculate the kinetic laws in both homogeneous and heterogeneous systems. The following two chapters describe the main approximation modes to calculate these laws. Three chapters are devoted to elementary steps with the various classes, the principles used to write them and their modeling using the theory of the activated complex in gas and condensed phases. Three chapters are devoted to the particular areas of chemical reactions, chain reactions, catalysis and the stoichiometric heterogeneous reactions. Finally the non-steady-state processes of combustion and explosion are treated in the final chapter.







The Journal of Physical Chemistry


Book Description

Includes section "New Books"










Stochastic Chemical Kinetics


Book Description

This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.




Research in Chemical Kinetics


Book Description

This is the second volume in a new series, which aims to publish authoritative review articles on a wide range of exciting and contemporary topics in gas and condensed phase kinetics. Research in Chemical Kinetics complements the acclaimed series Comprehensive Chemical Kinetics, and is edited by the same team of professionals. The reviews contained in this volume are concise, topical accounts of specific research written by acknowledged experts. The authors summarize their latest work and place it in a general context. Particular strengths of the volume are the quality of the contributions and their topicality, and the rapid publication realized.




Chemical kinetics


Book Description

The volume is devoted to the problem of chemical kinetics on modern level. The book includes information on chemical physics of nanocomposites, degradation, stabilization and flammability of polymeric materials as well as free radical mechanism of oxidation of organic compounds, thermostability, mechanism of action of catalytical systems and inhibitors in free radical reactions in liquid and solid phase, pure and applied chemistry of antioxidants (synthesis and application), ionic reactions, effect of chemoluminescence in the processes of oxidation, biodegradation and application of polymers in medicine, problems of adhesion of microorganisms on the surface of materials, thermo-, photo- and hydrolitic reactions, creation of new ecologically friendly flame retaradnts for polymers, polymer composites and polymer blends as well as filled polymers.