Miniaturized Transistors


Book Description

What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.







Evolution of Thin Film Morphology


Book Description

The focus of this book is on modeling and simulations used in research on the morphological evolution during film growth. The authors emphasize the detailed mathematical formulation of the problem. The book will enable readers themselves to set up a computational program to investigate specific topics of interest in thin film deposition. It will benefit those working in any discipline that requires an understanding of thin film growth processes.







Atomic Layer Deposition for Semiconductors


Book Description

Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.




Nonequilibrium Gas Dynamics and Molecular Simulation


Book Description

7.1 Introduction -- 7.2 Rotational Energy Exchange Models -- 7.2.1 Constant Collision Number -- 7.2.2 The Parker Model -- 7.2.3 Variable Probability Exchange Model of Boyd -- 7.2.4 Nonequilibrium Direction Dependent Model -- 7.2.5 Model Results -- 7.3 Vibrational Energy Exchange Models -- 7.3.1 Constant Collision Number -- 7.3.2 The Millikan-White Model -- 7.3.3 Quantized Treatment for Vibration -- 7.3.4 Model Results -- 7.4 Dissociation Chemical Reactions -- 7.4.1 Total Collision Energy Model -- 7.4.2 Redistribution of Energy Following a Dissociation Reaction -- 7.4.3 Vibrationally Favored Dissociation Model -- 7.5 General Chemical Reactions -- 7.5.1 Reaction Rates and Equilibrium Constant -- 7.5.2 Backward Reaction Rates in DSMC -- 7.5.3 Three-Body Recombination Reactions -- 7.5.4 Post-Reaction Energy Redistribution and General Implementation -- 7.5.5 DSMC Solutions for Reacting Flows -- 7.6 Summary -- Appendix A: Generating Particle Properties -- Appendix B: Collisional Quantities -- Appendix C: Determining Post-Collision Velocities -- Appendix D: Macroscopic Properties -- Appendix E: Common Integrals -- References -- Index




The DSMC Method


Book Description

Direct Simulation Monte Carlo is a well-established method for the computer simulation of a gas flow at the molecular level. While there is a limit to the size of the flow-field with respect to the molecular mean free path, personal computers now allow solutions well into the continuum flow regime. The method can be applied to basic problems in gas dynamics and practical applications range from microelectromechanics systems (MEMS) to astrophysical flows. DSMC calculations have assisted in the design of vacuum systems, including those for semiconductor manufacture, and of many space vehicles and missions. The method was introduced by the author fifty years ago and it has been the subject of two monographs that have been published by Oxford University Press. It is now twenty years since the second of these was written and, since that time, most DSMC procedures have been superseded or significantly modified. In addition, visual interactive DSMC application programs have been developed that have proved to be readily applicable by non-specialists to a wide variety of practical problems. The computational variables are set automatically within the code and the programs report whether or not the criteria for a good calculation have been met. This book is concerned with the theory behind the current DSMC molecular models and procedures, with their integration into general purpose programs, and with the validation and demonstration of these programs. The DSMC and associated programs, including all source codes, can be freely downloaded through links that are provided in the book. The main accompanying program is simply called the "DSMC program" and, in future versions of the book, it will be applicable to homogeneous (or zero-dimensional) flows through to three-dimensional flow. All DSMC simulations are time-accurate unsteady calculations, but the flow may become steady at large times. The current version of the DSMC code is applicable only to zero and one-dimensional flows and the older DS2V code is employed for the two-dimensional validation and demonstration cases. It is because of this temporary use of the older and well-proven program that the DS2V source code is made freely available for the first time. Most of the homogeneous flow cases are validation studies, but include internal mode relaxation studies and spontaneous and forced ignition leading to combustion in an oxygen-hydrogen mixture. The one-dimensional cases include the structure of a re-entry shock wave that takes into account electronic excitation as well as dissociation, recombination and exchange reactions. They also include a spherically imploding shock wave and a spherical blast wave. The two-dimensional and axially-symmetric demonstration cases range from a typical MEMS flow to aspects of the flow around rotating planets. Intermediate cases include the formation and structure of a combustion wave, a vacuum pump driven by thermal creep, a typical vacuum processing chamber, and the flow around a typical re-entry vehicle







Ion-Solid Interactions


Book Description

Comprehensive guide to an important materials science technique for students and researchers.




Computational Chemistry


Book Description

Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.