Chemically Deposited Optical Fiber Humidity Sensor


Book Description

Humidity measurement in industries is a critical factor, since it may affect the business cost of the product, end product quality, optimal functioning of equipment, and the health and safety of the personnel. Hence, humidity sensing is becoming very important, especially in the control systems for industrial processes. Since humidity is expressed in different ways, it is very difficult to come up with a reliable, consistent, and repeatable humidity measurement approach. In contrast to other sensors employed for measuring other parameters like temperature and pressure, a humidity sensor has to be in contact with the process environment and hence is difficult to implement. This research was initiated at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) for the requirement from the DOE to monitor the moisture in the soil at the nuclear waste storage facility. The idea was to monitor the leakage, if any, in the storage cylinders to avoid any hazard that may come up. The humidity sensor in this case had to be able to transmit the measurement over a distance far away from the actual measurement site. Keeping all these factors in mind, a chemically deposited optical fiber humidity sensor was developed. It was based on the evanescent tail absorption of light passing through an optical fiber due to hygroscopic material deposited on it. The hygroscopic material used was an aqueous solution of Poly-vinyl-acetate (PVA) and Cobalt Chloride (COCl2). The sensor yielded a consistent humidity measurement from 75% to 95%. Based on the above research, research is currently in progress to bring up a commercial prototype of the sensor.




CHEMICALLY DEPOSITED OPTICAL FIBER HUMIDITY SENSOR.


Book Description

Humidity measurement in industries is a critical factor, since it may affect the business cost of the product, end product quality, optimal functioning of equipment, and the health and safety of the personnel. Hence, humidity sensing is becoming very important, especially in the control systems for industrial processes. Since humidity is expressed in different ways, it is very difficult to come up with a reliable, consistent, and repeatable humidity measurement approach. In contrast to other sensors employed for measuring other parameters like temperature and pressure, a humidity sensor has to be in contact with the process environment and hence is difficult to implement. This research was initiated at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) for the requirement from the DOE to monitor the moisture in the soil at the nuclear waste storage facility. The idea was to monitor the leakage, if any, in the storage cylinders to avoid any hazard that may come up. The humidity sensor in this case had to be able to transmit the measurement over a distance far away from the actual measurement site. Keeping all these factors in mind, a chemically deposited optical fiber humidity sensor was developed. It was based on the evanescent tail absorption of light passing through an optical fiber due to hygroscopic material deposited on it. The hygroscopic material used was an aqueous solution of Poly-vinyl-acetate (PVA) and Cobalt Chloride (COCl2). The sensor yielded a consistent humidity measurement from 75% to 95%. Based on the above research, research is currently in progress to bring up a commercial prototype of the sensor.




Sensors Based on Nanostructured Materials


Book Description

This book presents the many different techniques and methods of fabricating materials on the nanometer scale, and, specifically, the utilization of these resources with regard to sensors. The techniques described are studied from an application-oriented perspective, providing the reader with a perspective of the types of nanostructured sensors available that is broader than other books which concentrate on theoretical situations related to specific fabrication techniques.




Lab-on-Fiber Technology


Book Description

This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the “lab-on-fiber” technology. Inspired by the well-established "lab on-a-chip" concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications. Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate description of the main developments and achievements in the lab-on-fiber technology roadmap, also highlighting the new perspectives and challenges to be faced. This book is essential for scientists interested in the cutting-edge fiber optic technology, but also for graduate students.




Optochemical Nanosensors


Book Description

Nanosized sensors enable the study of chemical and biochemical processes at a level and in dimensions that may not have been envisioned some 20 years ago. Fueled by their inherent small size and the unusual optical, magnetic, catalytic, and mechanical properties of nanoparticles, remarkable progress has been made in recent years in the development and utilization of nanosensors and optical nanotechnology will further widen the field. However, the design of new sensors requires new materials, new methods for their characterization, new optical sensing schemes, new approaches for creating nanosized structures, and new techniques for their interrogation in complex environments such as small living cells for studying biological signals or big public spaces for environmental monitoring . Optochemical Nanosensors covers the rapidly growing field of optical chemical nanosensing, a new and exciting area of research and development within the large field of optical chemical sensing and biosensing. Its many applications, including the detection of bioterrorist threats, food security, virology, explosive detection and more, are covered in these self-contained yet interrelated chapters. The book reviews optochemical sensors, starting from the basics in optoelectronicsand concluding with the presentation of diverse nanosensors. The authors offer insight into future trends in this growing field and present applications in the fields of medicine, security, and bioterrorism.




Optical Chemical Sensors


Book Description

This book covers optical chemical sensing by means of optical waveguides, from the fundamentals to the most recent applications. The book includes a historical review of the development of these sensors, from the earliest laboratory prototypes to the first commercial instrumentations. The book reprints a lecture by the Nobel Laureate Charles Townes on the birth of maser and laser, which lucidly illustrates the development of new science and new technology.




Chemical Sensors


Book Description

Momentum Press is proud to bring to you Chemical Sensors: Simulation and Modeling Volume 4: Optical Sensors, edited by Ghenadii Korotcenkov. This is the fourth of a new multi-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions. In this fourth volume, you will find background and guidance on: • Approaches used for modeling and simulation of various types of optical sensors such as fiber optic, surface plasmon resonance, Fabry-Pérot interferometers, transmittance in the midinfrared region, luminescence-based devices, and more • Approaches used for design and optimization of optical systems aimed for both remote gas sensing and gas analysis chambers for the nondispersive infrared (NDIR) spectral range • Multiscale atomistic simulation of hierarchical nanostructured materials for optical chemical sensing Chemical sensors are integral to the automation of myriad industrial processes and everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more. This multi-volume reference work covering simulation and modeling will serve as the perfect complement to Momentum Press’s 6-volume reference work, Chemical Sensors: Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor Technologies, which present detailed information related to materials, technologies, construction, and application of various devices for chemical sensing. Each simulation and modeling volume in the present series reviews modeling principles and approaches peculiar to specific groups of materials and devices applied for chemical sensing.







Plastic Optical Fiber Sensors


Book Description

Plastic Optical Fiber Sensors cover the fundamentals and applications of a new class of fiber sensors. With contributions from leading academics in the area, this book covers the theory of plastic optical fiber sensors or (POFs), as well as applications in oil, gas, biotechnology, and energy fields. Using multiple examples, the editors showcase the advantageous characteristics of POFs, such as ease of handling, large diameter, inexpensive peripheral components and simple termination tools. By doing so, the editors assert that there has been a proliferation of the use of POFs in new consumer products. The book also highlights uses for building various products, such as a POF sensor for oil trucker valve monitoring, a monitoring system for high voltage substation switch, an oil leaking sensor for offshore platforms and a solar tracker for illumination. Including over 300 black and white images, this book would be highly beneficial for professionals in manufacturing as well as academics in universities, particularly those who use optical fiber sensors on a regular basis.




Nanostructured Coatings


Book Description

This book delivers practical insight into a broad range of fields related to hard coatings, from their deposition and characterization up to the hardening and deformation mechanisms allowing the interpretation of results. The text examines relationships between structure/microstructure and mechanical properties from fundamental concepts, through types of coatings, to characterization techniques. The authors explore the search for coatings that can satisfy the criteria for successful implementation in real mechanical applications.