Chemistry of Ozone in Water and Wastewater Treatment


Book Description

Even though ozone has been applied for a long time for disinfection and oxidation in water treatment, there is lack of critical information related to transformation of organic compounds. This has become more important in recent years, because there is considerable concern about the formation of potentially harmful degradation products as well as oxidation products from the reaction with the matrix components. In recent years, a wealth of information on the products that are formed has accumulated, and substantial progress in understanding mechanistic details of ozone reactions in aqueous solution has been made. Based on the latter, this may allow us to predict the products of as yet not studied systems and assist in evaluating toxic potentials in case certain classes are known to show such effects. Keeping this in mind, Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications discusses mechanistic details of ozone reactions as much as they are known to date and applies them to the large body of studies on micropollutant degradation (such as pharmaceuticals and endocrine disruptors) that is already available. Extensively quoting the literature and updating the available compilation of ozone rate constants gives the reader a text at hand on which his research can be based. Moreover, those that are responsible for planning or operation of ozonation steps in drinking water and wastewater treatment plants will find salient information in a compact form that otherwise is quite disperse. A critical compilation of rate constants for the various classes of compounds is given in each chapter, including all the recent publications. This is a very useful source of information for researchers and practitioners who need kinetic information on emerging contaminants. Furthermore, each chapter contains a large selection of examples of reaction mechanisms for the transformation of micropollutants such as pharmaceuticals, pesticides, fuel additives, solvents, taste and odor compounds, cyanotoxins. Authors: Prof. Dr. Clemens von Sonntag, Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, and Instrumentelle Analytische Chemie, Universität Duisburg-Essen, Essen, Germany and Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, and Ecole Polytechnique Federal de Lausanne, Lausanne, Switzerland.




Wastewater Reuse and Current Challenges


Book Description

This volume discusses the current challenges related to the reuse of wastewater. It reviews the analytical methodologies for evaluating emerging contaminants and their transformation products, the sensitivity of various bioassays for assessing the biological effects of treated wastewater, and the bioavailability and uptake of organic contaminants during crop irrigation. It describes in detail the physicochemical and microbiological alterations in soil resulting from irrigation with treated urban wastewater, and discusses our current understanding of antibiotic resistance in wastewater treatment plants and in downstream environments. The book also includes an analysis of the effect of wastewater entering drinking water sources and production, and provides updated information on wastewater reuse for irrigation in North Africa. It presents an important integration tool for water recovery, known as water pinch analysis, and finally showcases two other examples of reuse – one in the paper industry and one in landfill management. It is of interest to experts from various fields of research, including analytical and environmental chemistry, toxicology and environmental and sanitary engineering.




Water Reuse


Book Description

Expanding water reuse-the use of treated wastewater for beneficial purposes including irrigation, industrial uses, and drinking water augmentation-could significantly increase the nation's total available water resources. Water Reuse presents a portfolio of treatment options available to mitigate water quality issues in reclaimed water along with new analysis suggesting that the risk of exposure to certain microbial and chemical contaminants from drinking reclaimed water does not appear to be any higher than the risk experienced in at least some current drinking water treatment systems, and may be orders of magnitude lower. This report recommends adjustments to the federal regulatory framework that could enhance public health protection for both planned and unplanned (or de facto) reuse and increase public confidence in water reuse.




Water Reclamation and Sustainability


Book Description

Many hydrological, geochemical, and biological processes associated with water reclamation and reuse are poorly understood. In particular, the occurrence and effects of trace organic and inorganic contaminants commonly found in reclaimed water necessitates careful analysis and treatment prior to safe reuse. Water Reclamation and Sustainability is a practical guide to the latest water reclamation, recycling, and reuse theory and practice. From water quality criteria and regulations to advanced techniques and implementation issues, this book offers scientists a toolkit for developing safe and successful reuse strategies. With a focus on specific contaminant removal techniques, this book comprehensively covers the full range of potential inorganic/organic contaminating compounds and highlights proven remediation methods. Socioeconomic implications related to current and future water shortages are also addressed, underscoring the many positive benefits of sustainable water resource management. - Offers pragmatic solutions to global water shortages - Provides an overview of the latest analytical techniques for water monitoring - Reviews current remediation efforts - Covers innovative technologies for green, gray, brown and black water reclamation and reuse




Water Reuse


Book Description

An Integrated Approach to Managing the World's Water Resources Water Reuse: Issues, Technologies, and Applications equips water/wastewater students, engineers, scientists, and professionals with a definitive account of the latest water reclamation, recycling, and reuse theory and practice. This landmark textbook presents an integrated approach to all aspects of water reuse _ from public health protection to water quality criteria and regulations to advanced technology to implementation issues. Filled with over 500 detailed illustrations and photographs, Water Reuse: Issues, Technology, and Applications features: In-depth coverage of cutting-edge water reclamation and reuse applications Current issues and developments in public health and environmental protection criteria, regulations, and risk management Review of current advanced treatment technologies, new developments, and practices Special emphasis on process reliability and multiple barrier concepts approach Consideration of satellite and decentralized water reuse facilities Consideration of planning and public participation of water reuse Inside This Landmark Water/Wastewater Management Tool • Water Reuse: An Introduction • Health and Environmental Concerns in Water Reuse • Technologies and Systems for Water Reclamation and Reuse • Water Reuse Applications • Implementing Water Reuse




Industrial Wastewater Treatment, Recycling and Reuse


Book Description

Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector. - Provides practical solutions for the treatment and recycling of industrial wastewater via case studies - Instructive articles from expert authors give a concise overview of different physico-chemical and biological methods of treatment, cost-to-benefit analysis, and process comparison - Supplies you with the relevant information to make quick process decisions




Issues in Potable Reuse


Book Description

A small but growing number of municipalities are augmenting their drinking water supplies with highly treated wastewater. But some professionals in the field argue that only the purest sources should be used for drinking water. Is potable reuse a viable application of reclaimed water? How can individual communities effectively evaluate potable reuse programs? How certain must "certain" be when it comes to drinking water safety? Issues in Potable Reuse provides the best available answers to these questions. Useful to scientists yet accessible to concerned lay readers, this book defines important terms in the debate and provides data, analysis, and examples of the experience of municipalities from San Diego to Tampa. The committee explores in detail the two major types of contaminants: Chemical contaminants. The committee discusses how to assess toxicity, reduce the input of contaminants, evaluate treatment options, manage the byproducts of disinfection and other issues. Microbial contaminants, including newly emerging waterborne pathogens. The book covers methods of detection, health consequences, treatment, and more. Issues in Potable Reuse reviews the results of six health effects studies at operational or proposed reuse projects. The committee discusses the utility of fish versus mammals in toxicology testing and covers issues in quality assurance.




Physical and Chemical Separation in Water and Wastewater Treatment


Book Description

Based upon half a century of research by the authors, Physical and Chemical Separation in Water and Wastewater Treatment addresses the whole water cycle spectrum, from global hydrological cycle, urban-regional metabolic cycle to individual living and production cycle, with respect to quality control technology based on fundamental science and theories. For every treatment process, basic scientific and environmental physical and chemical natures are explained with respect to those of water and its impurities. Health danger and risks for human beings are also covered. The authors define water qualities on a “Water Quality Matrix” composed of 35 elements. The vertical axis (row), has individual 7digit impurity size from 10-10m (water molecule 3?) to 10-3m (0.1mm sand grains) and in the horizontal axis(column) there are 5 categories of surrogate chemical and biochemical quality indices. The same 35 element matrix is used to correspond with several typical water quality treatments, unit-operation/unit-process, with a suitable characteristic grouping of the elements. The authors then present “the Water Quality Conversion Matrix” or “Water Quality Treatment Matrix”. With respect to typical treatment processes, the basic concept and scientific background are explained and the background of the technologies is clarified. Mechanisms of the process are explained and a kinetic process is formulated. The kinetics are experimentally verified quantitatively with important equilibrium and rate constants. Based on the authors’ research, various new treatment technologies are proposed with high efficiency, high capacity and less energy, and with steady operation ability. This comprehensive reference book is intended for undergraduate and graduate students, and also serves as a guide book for practical engineers and industry and university researchers.




Wastewater Treatment and Reuse - Lessons Learned in Technological Developments and Management Issues


Book Description

Wastewater Treatment and Reuse - Lessons Learned in Technological Developments and Management Issues, Volume 6 explores emerging and state-of-the-art technologies. Chapters cover Treatment options for the direct reuse of reclaimed water in developing countries, Water reuse in India: Current perspectives and future potential, Water reuse practices, solutions and trends at international, Impact of the use of treated wastewater for agricultural need: behavior of organic micropollutants in soil, transfer to crops, and related risks, Environmental risks of sewage sludge reuse in agriculture, Modeling tools for risk management in reclaimed wastewater reuse systems: Focus on contaminants of emerging concern (CECs), and much more. - Covers a wide breadth of emerging and state-of-the-art technologies - Includes contributions from an international board of authors - Provides a comprehensive set of reviews on wastewater treatments and reuse




Chemistry and Water


Book Description

After air, water is the most crucial resource for human survival. To achieve water sustainability, we will have to deal with its scarcity and quality, and find ways to reclaim it from various sources. Chemistry and Water: The Science Behind Sustaining the World's Most Crucial Resource applies contemporary and sophisticated separation science and chromatographic methods to address the pressing worldwide concerns of potable water for drinking and safe water for irrigation to raise food for communities around the world. Edited and authored by world-leading analytical chemists, the book presents the latest research and solutions on topics including water quality and pollution, water treatment technologies and practices, watershed management, water quality and food production, challenges to achieving sustainable water supplies, water reclamation techniques, and wastewater reuse. - Explores the role water plays to assure our survival and maintain life - Provides valuable information from world leaders in chemistry and water research - Addresses water challenges and solutions globally to ensure sustainability