Learning with Understanding in the Chemistry Classroom


Book Description

This volume offers a critical examination of a variety of conceptual approaches to teaching and learning chemistry in the school classroom. Presenting up-to-date research and theory and featuring contributions by respected academics on several continents, it explores ways of making knowledge meaningful and relevant to students as well as strategies for effectively communicating the core concepts essential for developing a robust understanding of the subject. Structured in three sections, the contents deal first with teaching and learning chemistry, discussing general issues and pedagogical strategies using macro, sub-micro and symbolic representations of chemical concepts. Researchers also describe new and productive teaching strategies. The second section examines specific approaches that foster learning with understanding, focusing on techniques such as cooperative learning, presentations, laboratory activities, multimedia simulations and role-playing in forensic chemistry classes. The final part of the book details learner-centered active chemistry learning methods, active computer-aided learning and trainee chemistry teachers` use of student-centered learning during their pre-service education. Comprehensive and highly relevant, this new publication makes a significant contribution to the continuing task of making chemistry classes engaging and effective.




Machine Learning in Chemistry


Book Description

Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important




Foundations for Teaching Chemistry


Book Description

Chemistry is a subject that has the power to engage and enthuse students but also to mystify and confound them. Effective chemistry teaching requires a strong foundation of subject knowledge and the ability to transform this into teachable content which is meaningful for students. Drawing on pedagogical principles and research into the difficulties that many students have when studying chemical concepts, this essential text presents the core ideas of chemistry to support new and trainee chemistry teachers, including non-specialists. The book focuses on the foundational ideas that are fundamental to and link topics across the discipline of chemistry and considers how these often complex notions can be effectively presented to students without compromising on scientific authenticity. Chapters cover: the nature of chemistry as a science the chemistry triplet substances and purity in chemistry the periodic table energy in chemistry and chemical bonding contextualising and integrating chemical knowledge Whilst there are a good many books describing chemistry and many others that offer general pedagogic guidance on teaching science, Foundations for Teaching Chemistry provides accounts of core chemical topics from a teaching perspective and offers new and experienced teachers support in developing their own ‘chemical knowledge for teaching’.




Innovative Methods of Teaching and Learning Chemistry in Higher Education


Book Description

Two recent initiatives from the EU, namely the Bologna Process and the Lisbon Agenda are likely to have a major influence on European Higher Education. It seems unlikely that traditional teaching approaches, which supported the elitist system of the past, will promote the mobility, widened participation and culture of 'life-long learning' that will provide the foundations for a future knowledge-based economy. There is therefore a clear need to seek new approaches to support the changes which will inevitably occur. The European Chemistry Thematic Network (ECTN) is a network of some 160 university chemistry departments from throughout the EU as well as a number of National Chemical Societies (including the RSC) which provides a discussion forum for all aspects of higher education in chemistry. This handbook is a result of one of their working groups, who identified and collated good practice with respect to innovative methods in Higher Level Chemistry Education. It provides a comprehensive overview of innovations in university chemistry teaching from a broad European perspective. The generation of this book through a European Network, with major national chemical societies and a large number of chemistry departments as members make the book unique. The wide variety of scholars who have contributed to the book, make it interesting and invaluable reading for both new and experienced chemistry lecturers throughout the EU and beyond. The book is aimed at chemistry education at universities and other higher level institutions and at all academic staff and anyone interested in the teaching of chemistry at the tertiary level. Although newly appointed teaching staff are a clear target for the book, the innovative aspects of the topics covered are likely to prove interesting to all committed chemistry lecturers.




Relevant Chemistry Education


Book Description

This book is aimed at chemistry teachers, teacher educators, chemistry education researchers, and all those who are interested in increasing the relevance of chemistry teaching and learning as well as students' perception of it. The book consists of 20 chapters. Each chapter focuses on a certain issue related to the relevance of chemistry education. These chapters are based on a recently suggested model of the relevance of science education, encompassing individual, societal, and vocational relevance, its present and future implications, as well as its intrinsic and extrinsic aspects. “Two highly distinguished chemical educators, Ingo Eilks and AviHofstein, have brought together 40 internationally renowned colleagues from 16 countries to offer an authoritative view of chemistry teaching today. Between them, the authors, in 20 chapters, give an exceptional description of the current state of chemical education and signpost the future in both research and in the classroom. There is special emphasis on the many attempts to enthuse students with an understanding of the central science, chemistry, which will be helped by having an appreciation of the role of the science in today’s world. Themes which transcend all education such as collaborative work, communication skills, attitudes, inquiry learning and teaching, and problem solving are covered in detail and used in the context of teaching modern chemistry. The book is divided into four parts which describe the individual, the societal, the vocational and economic, and the non-formal dimensions and the editors bring all the disparate leads into a coherent narrative, that will be highly satisfying to experienced and new researchers and to teachers with the daunting task of teaching such an intellectually demanding subject. Just a brief glance at the index and the references will convince anyone interested in chemical education that this book is well worth studying; it is scholarly and readable and has tackled the most important issues in chemical education today and in the foreseeable future.” – Professor David Waddington, Emeritus Professor in Chemistry Education, University of York, United Kingdom




Transition Metals in the Synthesis of Complex Organic Molecules


Book Description

This second edition offers easy access to the field of organotransition metal chemistry. The book covers the basics of transition metal chemistry, giving a practical introduction to organotransition reaction mechanisms.




The Nature of the Chemical Concept


Book Description

This book offers a step-by-step analysis and discussion of just why some students find chemistry difficult, by examining the nature of chemistry concepts, and how they are communicated and learnt.




Hands-On Chemistry Activities with Real-Life Applications


Book Description

This comprehensive collection of over 300 intriguing investigations-including demonstrations, labs, and other activities-- uses everyday examples to make chemistry concepts easy to understand. It is part of the two-volume PHYSICAL SCIENCE CURRICULUM LIBRARY, which consists of Hands-On Physics Activities With Real-Life Applications and Hands-On Chemistry Activities With Real-Life Applications.




Chemistry Education


Book Description

Winner of the CHOICE Outstanding Academic Title 2017 Award This comprehensive collection of top-level contributions provides a thorough review of the vibrant field of chemistry education. Highly-experienced chemistry professors and education experts cover the latest developments in chemistry learning and teaching, as well as the pivotal role of chemistry for shaping a more sustainable future. Adopting a practice-oriented approach, the current challenges and opportunities posed by chemistry education are critically discussed, highlighting the pitfalls that can occur in teaching chemistry and how to circumvent them. The main topics discussed include best practices, project-based education, blended learning and the role of technology, including e-learning, and science visualization. Hands-on recommendations on how to optimally implement innovative strategies of teaching chemistry at university and high-school levels make this book an essential resource for anybody interested in either teaching or learning chemistry more effectively, from experience chemistry professors to secondary school teachers, from educators with no formal training in didactics to frustrated chemistry students.




Take-Home Chemistry


Book Description

For high school science teachers, homeschoolers, science coordinators, and informal science educators, this collection of 50 inquiry-based labs provides hands-on ways for students to learn science at home safely. Author Michael Horton promises that students who conduct the labs in Take-Home Chemistry as supplements to classroom instruction will enhance higher-level thinking, improve process skills, and raise high-stakes test scores."