Chromosomal Instability and Aging


Book Description

This text examines the relationship between DNA damage and repair, cellular senescence, genomic instability, and aging. The authors provide in-depth discussions of various types of DNA damage, the DNA repair network, and cellular responses to genetic damage to assess their impact on the modulation of aging processes and age-related diseases, including cancer development. Chromosomal Instability and Aging describes cloning genes for human chromosomal instability disorders, the causal factors and consequences of chromosomal injury, the telomere hypothesis of aging, and age-dependant mitochondrial genetic instability. It includes more than 2200 references to facilitate further research, making it an informative and timely guide.




Chromosomal Instability and Aging


Book Description

This text examines the relationship between DNA damage and repair, cellular senescence, genomic instability, and aging. The authors provide in-depth discussions of various types of DNA damage, the DNA repair network, and cellular responses to genetic damage to assess their impact on the modulation of aging processes and age-related diseases, including cancer development. Chromosomal Instability and Aging describes cloning genes for human chromosomal instability disorders, the causal factors and consequences of chromosomal injury, the telomere hypothesis of aging, and age-dependant mitochondrial genetic instability. It includes more than 2200 references to facilitate further research, making it an informative and timely guide.




Genome Stability


Book Description

Genome Stability: From Virus to Human Application, Second Edition, a volume in the Translational Epigenetics series, explores how various species maintain genome stability and genome diversification in response to environmental factors. Here, across thirty-eight chapters, leading researchers provide a deep analysis of genome stability in DNA/RNA viruses, prokaryotes, single cell eukaryotes, lower multicellular eukaryotes, and mammals, examining how epigenetic factors contribute to genome stability and how these species pass memories of encounters to progeny. Topics also include major DNA repair mechanisms, the role of chromatin in genome stability, human diseases associated with genome instability, and genome stability in response to aging. This second edition has been fully revised to address evolving research trends, including CRISPRs/Cas9 genome editing; conventional versus transgenic genome instability; breeding and genetic diseases associated with abnormal DNA repair; RNA and extrachromosomal DNA; cloning, stem cells, and embryo development; programmed genome instability; and conserved and divergent features of repair. This volume is an essential resource for geneticists, epigeneticists, and molecular biologists who are looking to gain a deeper understanding of this rapidly expanding field, and can also be of great use to advanced students who are looking to gain additional expertise in genome stability. - A deep analysis of genome stability research from various kingdoms, including epigenetics and transgenerational effects - Provides comprehensive coverage of mechanisms utilized by different organisms to maintain genomic stability - Contains applications of genome instability research and outcomes for human disease - Features all-new chapters on evolving areas of genome stability research, including CRISPRs/Cas9 genome editing, RNA and extrachromosomal DNA, programmed genome instability, and conserved and divergent features of repair




Telomeres and Telomerase in Cancer


Book Description

Telomerase, an enzyme that maintains telomeres and endows eukaryotic cells with immortality, was first discovered in tetrahymena in 1985. In 1990s, it was proven that this enzyme also plays a key role in the infinite proliferation of human cancer cells. Now telomere and telomerase are widely accepted as important factors involved in cancer biology, and as promising diagnostic tools and therapeutic targets. Recently, role of telomerase in “cancer stem cells” has become another attractive story. Until now, there are several good books on telomere and telomerase focusing on biology in ciliates, yeasts, and mouse or basic sciences in human, providing basic scientists or students with updated knowledge.







Aging of the Genome


Book Description

Aging has long since been ascribed to the gradual accumulation of DNA mutations in the genome of somatic cells. However, it is only recently that the necessary sophisticated technology has been developed to begin testing this theory and its consequences. Vijg critically reviews the concept of genomic instability as a possible universal cause of aging in the context of a new, holistic understanding of genome functioning in complex organisms resulting from recent advances in functional genomics and systems biology. It provides an up-to-date synthesis of current research, as well as a look ahead to the design of strategies to retard or reverse the deleterious effects of aging. This is particularly important in a time when we are urgently trying to unravel the genetic component of aging-related diseases. Moreover, there is a growing public recognition of the imperative of understanding more about the underlying biology of aging, driven by continuing demographic change.




The AGT Cytogenetics Laboratory Manual


Book Description

Cytogenetics is the study of chromosome morphology, structure, pathology, function, and behavior. The field has evolved to embrace molecular cytogenetic changes, now termed cytogenomics. Cytogeneticists utilize an assortment of procedures to investigate the full complement of chromosomes and/or a targeted region within a specific chromosome in metaphase or interphase. Tools include routine analysis of G-banded chromosomes, specialized stains that address specific chromosomal structures, and molecular probes, such as fluorescence in situ hybridization (FISH) and chromosome microarray analysis, which employ a variety of methods to highlight a region as small as a single, specific genetic sequence under investigation. The AGT Cytogenetics Laboratory Manual, Fourth Edition offers a comprehensive description of the diagnostic tests offered by the clinical laboratory and explains the science behind them. One of the most valuable assets is its rich compilation of laboratory-tested protocols currently being used in leading laboratories, along with practical advice for nearly every area of interest to cytogeneticists. In addition to covering essential topics that have been the backbone of cytogenetics for over 60 years, such as the basic components of a cell, use of a microscope, human tissue processing for cytogenetic analysis (prenatal, constitutional, and neoplastic), laboratory safety, and the mechanisms behind chromosome rearrangement and aneuploidy, this edition introduces new and expanded chapters by experts in the field. Some of these new topics include a unique collection of chromosome heteromorphisms; clinical examples of genomic imprinting; an example-driven overview of chromosomal microarray; mathematics specifically geared for the cytogeneticist; usage of ISCN’s cytogenetic language to describe chromosome changes; tips for laboratory management; examples of laboratory information systems; a collection of internet and library resources; and a special chapter on animal chromosomes for the research and zoo cytogeneticist. The range of topics is thus broad yet comprehensive, offering the student a resource that teaches the procedures performed in the cytogenetics laboratory environment, and the laboratory professional with a peer-reviewed reference that explores the basis of each of these procedures. This makes it a useful resource for researchers, clinicians, and lab professionals, as well as students in a university or medical school setting.




Human Adult Stem Cells


Book Description

The aim of volume 7 of Human Cell Culture is to provide clear and precise methods for growing primary cultures of adult stem cells from various human tissues and describe culture conditions in which these adult stem cells differentiate along their respective lineages. The book will be of value to biomedical scientists and of special interest to stem cell biologists and tissue engineers. Each chapter is written by experts actively involved in growing human adult stem cells.




Chromosomal Abnormalities


Book Description

This edited book, Chromosomal Abnormalities - A Hallmark Manifestation of Genomic Instability, contains a series of chapters highlighting several aspects related to the generation of chromosomal abnormalities in genetic material. We are extremely grateful to the authors who had contributed with valuable information about the role of genomic instability in pathological disorders as well as in the evolution process.




The Micronucleus Assay in Toxicology


Book Description

Concerns about the adverse health effects of chemicals and radiation present in the environment and at workplaces have created the need for better detection systems to assess their potential to cause DNA damage in humans and other organisms across ecosystems. The Micronucleus Assay in Toxicology is the first comprehensive volume concerning the use of micronucleus assays in genetic toxicology. It succinctly explains the mechanisms by which genotoxins cause micronucleus formation and its relation to diseases. Furthermore, it describes the methods which are currently used for the analyses of micronuclei in different types of cells in human in vivo biomonitoring studies, routine in vivo tests with rodents, in vitro studies with human and mammalian cells, environmental monitoring with invertebrates and vertebrates such as molluscs, fish and, also, in plant bioassays. Moreover, this book also focuses on the use of the micronucleus technique in other research areas, including the detection of DNA damage caused by important groups of genotoxic carcinogens (heavy metals, industrial chemicals, cytotoxic drugs, pesticides, ionising radiation, etc.) as well as study designs, statistical analyses, international regulatory guidelines, and the development of automated scoring devices for this assay. This book will serve as both, a reference and a guide to students, and investigators in biomedical, biochemical and pharmaceutical sciences interested in gaining a better understanding of the biology of micronuclei and their application in measuring DNA damage caused by natural or man-made genotoxins.